
www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd iiffirs.indd ii 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

BEGINNING ARCGIS®

FOR DESKTOP DEVELOPMENT USING .NET

INTRODUCTION . xxi

 � PART I THE BASICS

CHAPTER 1 Why Geospatial Is Special . 3

CHAPTER 2 Introduction to ArcGIS for Desktop Applications Customization 35

 � PART II .NET PROGRAMMING FUNDAMENTALS

CHAPTER 3 .NET Programming Fundamentals, Part I . 63

CHAPTER 4 .NET Programming Fundamentals, Part II . 103

 � PART III ARCOBJECTS PROGRAMMING

CHAPTER 5 Understanding ArcObjects Object Model Diagrams 139

CHAPTER 6 Accessing Maps and Layers . 165

CHAPTER 7 Working with Tables and FeatureClasses . 197

CHAPTER 8 Subsets of Records . 227

CHAPTER 9 Constructing and Using the Geometry of Features 257

CHAPTER 10 Rendering Geospatial Data and Using Hyperlinks and MapTips 295

CHAPTER 11 Labeling, Exporting ActiveView, and Working with Elements 327

CHAPTER 12 Geoprocessing with Tools and Models . 365

CHAPTER 13 Feature Data Management . 403

CHAPTER 14 Advanced Topics in ArcObjects Programming and Deployment 429

APPENDIX Answers to Chapter Exercises . 467

INDEX . 479

ffirs.indd iffirs.indd i 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd iiffirs.indd ii 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

BEGINNING

ArcGIS® for Desktop Development

Using .NET

ffirs.indd iiiffirs.indd iii 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd ivffirs.indd iv 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

BEGINNING

ArcGIS® for Desktop Development

Using .NET

Pouria Amirian

ffirs.indd vffirs.indd v 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

This edition fi rst published 2013

© 2013 John Wiley & Sons, Ltd.

Registered offi ce

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offi ces, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identifi ed as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed
to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

Trademarks: Wiley, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries, and may
not be used without written permission. ArcGIS is a registered trademark of Esri in the United States and other countries.
All other trademarks are the property of their respective owners. John Wiley & Sons, Ltd. is not associated with any
product or vendor mentioned in this book.

A catalogue record for this book is available from the British Library.

978-1-118-44254-8 (paperback)
978-1-118-44253-1 (ebook)
978-1-118-44255-5 (ebook)
978-1-118-44252-4 (ebook)

Set in 9.5 /12 Sabon LT Std Roman, by MPS Limited, Chennai, India.

Printed in the United States by Bind-Rite

ffirs.indd viffirs.indd vi 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.wiley.com
http://www.it-ebooks.info/

To the best mother and father in the whole world, Nosratolah and Soghra

To the best wife in the solar system, Ana

To the best sister and brother in the Milky Way, Paria and Payam

ffirs.indd viiffirs.indd vii 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd viiiffirs.indd viii 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHOR

POURIA AMIRIAN holds a Ph.D. in Geospatial Information Systems (GIS).
Dr. Amirian is a developer and GIS/IT lecturer with extensive experience developing
and deploying small to large-scale Geospatial Information Systems. At the moment
he is a research fellow of Strategic Research in Advanced Geotechnologies
(www.StratAG.com) at the National University of Ireland in Maynooth, where he
focuses on Geospatial Service Oriented Architecture and working with NoSQL
databases to handle big geospatial data. When he is not coding, Pouria is often found
reading aviation magazines or practicing Wing Tsun. Pouria welcomes feedback about
this book by email at PouriaAmirian.ArcObjects@gmail.com.

ffirs.indd ixffirs.indd ix 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.StratAG.com
mailto:PouriaAmirian.ArcObjects@gmail.com
http://www.it-ebooks.info/

ffirs.indd xffirs.indd x 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

VP CONSUMER AND TECHNOLOGY

PUBLISHING DIRECTOR

Michelle Leete

ASSOCIATE DIRECTOR—BOOK CONTENT

MANAGEMENT

Martin Tribe

ASSOCIATE PUBLISHER

Chris Webb

ASSOCIATE COMMISSIONING EDITOR

Ellie Scott

ASSOCIATE MARKETING DIRECTOR

Louise Breinholt

MARKETING MANAGER

Lorna Mein

SENIOR MARKETING EXECUTIVE

Kate Parrett

EDITORIAL MANAGER

Jodi Jensen

SENIOR PROJECT EDITOR

Sara Shlaer

PROJECT EDITOR

Tom Dinse

TECHNICAL EDITOR

Alexey Tereshenkov

PRODUCTION EDITOR

Daniel Scribner

PROOFREADER

Louise Watson, Word One

INDEXER

John Sleeva

COVER DESIGNER

LeAndra Young

COVER IMAGE

©Anahid Basiri

CREDITS

ffirs.indd xiffirs.indd xi 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd xiiffirs.indd xii 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

EVEN THOUGH THE AUTHOR’S NAME is the one that graces the cover of a book, no book is the result
of one person’s efforts, and I’d like to thank a few of the people involved in this one. First and fore-
most, thanks to John Wiley & Sons for giving me the opportunity to write and providing me such
a brilliant team for publishing this book. They were the only people willing to take a risk on an
unknown author for the fi rst book on GIS published by Wrox, and for that I will be forever grateful.
Thanks to the staff of John Wiley & Sons — specifi cally Tom Dinse, Debbye Butler, Daniel Scribner
and Louise Watson, whose watchful eyes saved me from potentially embarrassing mistakes. Thanks
also to Chris Webb for getting me started with the book and Ellie Scott for keeping me on track. All
of them did a great job of dealing with the frequent changes I made to the book as I was writing.

I’d like to thank my technical editor, Alexy Treshenkov, whose efforts made this book far better
than it would have been otherwise.

I’d also like to thank Dr. Adam Winstanley, head of the Department of Computer Science at the
National University of Ireland, Maynooth (NUIM), Dr. Martin Charlton from the National Centre
for Geocomputation (NCG) Ireland, and Dr. Jan Rigby, program manager of StratAG (Strategic
Research in Advanced Geotechnologies).

My gratitude, also, to those who helped create the .NET Framework, ArcObjects, tools, APIs,
libraries, standards, specifi cations and all the other fun stuff that helps bring the geospatial to the
mainstream and make GIS development and programming exciting today.

I would like to thank everyone who bought this book! I sincerely hope you have as much fun read-
ing it as I did writing it, and I hope that you fi nd it to be worth your hard-earned money and that it
proves to be an educational and eye-opening experience.

It is time for expressing my feelings that never can be told using words. I am the luckiest person in
the whole world because I have the greatest parents. I want to thank them for countless reasons: for
always listening patiently, for their constant support, and for always being by my side. Also, I am so
grateful to my father- and mother-in-law for all they do for Ana and me. I owe my life to my wife;
my unprecedented wife Dr. Anahid Basiri, who saved my life with her love, passion, and patience. In
addition to being the fi rst reader of the book, Ana also took the photograph that is on the cover of
this book. This is an image of the International Neuroscience Institute (INI).

Last but most defi nitely not least, we both (Ana and I) appreciate the high level of care and support
of all INI’s staff, especially Prof. M. Samii, Dr. J. Pieper, Prof. B. Mohammadi, and Prof. A. Samii.
The service I got there was more like inspiration rather than just a brain surgery. In fact, the idea of
writing this book had been on my mind for several years, but when I was in INI, I promised myself
I would write this book, and now I am so happy to make this promise come true. To be honest,
I want to thank that brain tumor because after getting rid of it, I started truly living every single
moment. My life is now so joyful that if I could go back and choose not to have such a problem, to
continue my life as it was, I would defi nitely choose to have that brain tumor and successful surgery
and to enjoy every single moment beside my family as I am doing now.

ffirs.indd xiiiffirs.indd xiii 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ffirs.indd xivffirs.indd xiv 26/02/13 12:47 PM26/02/13 12:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION xxi

PART I: THE BASICS

CHAPTER 1: WHY GEOSPATIAL IS SPECIAL 3

A Tour of Geospatial Data 4

Why Geospatial Is Special 8

Various Kinds of GIS Software 10

Server GIS 11

Desktop GIS 13

Developer GIS 17

Mobile GIS 18

Geospatial Data Models and Storage 19

Raster 19

Vector 20

Geospatial Data as Text or Binary File 20

Geospatial Data in Georelational Models 21

Geospatial Data Inside Spatial DBMS 21

Geospatial Data in XML Structures 23

Esri Geodatabase 30

Personal Geodatabase 30

File Geodatabase 30

ArcSDE Geodatabase 31

Summary 32

CHAPTER 2: INTRODUCTION TO ARCGIS FOR
DESKTOP APPLICATIONS CUSTOMIZATION 35

Four Ways to Customize ArcGIS for Desktop 36

Customizing the User Interface 37

Scripting 41

Desktop Add-Ins 48

ArcObjects SDK 55

Summary 59

ftoc.indd xvftoc.indd xv 25/02/13 4:06 PM25/02/13 4:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xvi

CONTENTS

PART II: .NET PROGRAMMING FUNDAMENTALS

CHAPTER 3: .NET PROGRAMMING FUNDAMENTALS, PART I 63

The .NET Framework 63

The C# Language 64

A Brief History of C# 64

Basic Concepts 65

Variables and Data Types 66

Nullable Data Types 71

Operations on Variables 71

Arrays 75

Decision-Making 76

Iteration 78

Object Manipulation 81

Data Type Conversion 83

Enumerations 85

Methods 89

Introduction to Object-Oriented Programming in C# 93

Object-Oriented Programming in Action 94

Defi ning Properties 96

Defi ning Methods 98

Defi ning Constructors 98

Summary 100

CHAPTER 4: .NET PROGRAMMING FUNDAMENTALS, PART II 103

Overview of Object-Oriented Programming Concepts 104

Abstraction 104

Encapsulation 104

Inheritance 105

Polymorphism 106

Reference Types and Value Types 108

Assignment Operations 108

Comparison Operations 109

Passing Parameters between Method Calls 109

Brief Explanation of All .NET Types 111

Namespaces and Assemblies 112

Debugging Using Visual Studio 113

Structured Exception Handling 117

Casting Objects 120

Aggregation Using Collections 121

ftoc.indd xviftoc.indd xvi 25/02/13 4:06 PM25/02/13 4:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

CONTENTS

The ArrayList 122

Generics 123

Reading and Writing Files 123

Summary 135

PART III: ARCOBJECTS PROGRAMMING

CHAPTER 5: UNDERSTANDING ARCOBJECTS OBJECT MODEL
DIAGRAMS 139

What Is ArcObjects? 140

Interface-Based Programming in Brief 140

Understanding Object Model Diagrams 144

Types of Classes in ArcObjects 145

Relationships between Classes 147

Members of Interfaces 149

Interface Inheritance 151

Wormhole 153

Additional Tips for Using Object Model Diagrams 153

Where to Start with ArcObjects 155

How to Find an Associated Member 156

Summary 163

CHAPTER 6: ACCESSING MAPS AND LAYERS 165

Introduction to Maps and Layers In ArcObjects 165

General Properties of All Layers 175

Working with FeatureLayers 179

Working with RasterLayers 183

Adding an Existing *.lyr File to a Map 184

Adding *.lyr Files Using GxDialog 186

Saving *.lyr and *.mxd Files 191

Summary 194

CHAPTER 7: WORKING WITH TABLES AND FEATURECLASSES 197

Accessing Tables and FeatureClasses 197

Adding and Deleting Fields 204

Adding Existing FeatureClasses, Tables, and Rasters to a Map 207

Deleting an Existing FeatureDataset, FeatureClass,

 Table, or Raster 215

Creating Tables and Rows 215

Summary 225

ftoc.indd xviiftoc.indd xvii 25/02/13 4:06 PM25/02/13 4:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xviii

CONTENTS

CHAPTER 8: SUBSETS OF RECORDS 227

Using Object Model Diagrams for Selecting Features and Rows 228

Working with Existing Selections 229

Selecting Rows and Features 233

Accessing a Subset of Records 237

Simple Statistics of Features 245

Some Important Points about Using Cursors 251

Displaying Subsets of Geospatial Data 254

Summary 255

CHAPTER 9: CONSTRUCTING AND USING THE
GEOMETRY OF FEATURES 257

Object Model Diagram for the Geometry
 of Features and Graphics 258

Displaying Geometries on the Screen 260

Creating and Drawing Points 261

Creating and Drawing Multipoints 264

Creating and Drawing Polylines 268

Creating and Drawing Polygons 272

Creating a New Feature and Editing
 an Existing Feature’s Geometry 276

Working with Spatial Operators 281

Examining Spatial Relationships 281

Common Geoprocessing Operations 284

Determining the Nearest Points and Distance 287

Length, Area, Centroid, and Envelope of Geometries 292

Summary 293

CHAPTER 10: RENDERING GEOSPATIAL DATA AND
USING HYPERLINKS AND MAPTIPS 295

Geospatial Data Display 296

Color and ColorRamp Classes 296

Symbols 298

Renderers for Vector and Raster Geospatial Data 300

Going beyond Simple Display 318

Simple and Advanced MapTips 319

Hyperlinks 321

Summary 324

ftoc.indd xviiiftoc.indd xviii 25/02/13 4:06 PM25/02/13 4:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xix

CONTENTS

CHAPTER 11: LABELING, EXPORTING ACTIVEVIEW,
AND WORKING WITH ELEMENTS 327

Labeling 328

Labeling with the Default Labeling Engine 329

Labeling with the Maplex Labeling Engine 334

Exporting the ActiveView 336

Working with Elements 346

Adding GraphicElements 348

Adding FrameElements 352

Summary 361

CHAPTER 12: GEOPROCESSING WITH TOOLS AND MODELS 365

ArcObjects and the Geoprocessing Framework 365

Running Geoprocessing Tools 366

Running Custom Tools 375

Opening a Tool’s Dialog Box in Code 384

Geoprocessing in the Background 389

Bach Processing 397

Can I Manage the Execution of Geoprocessing Tools? 399

Summary 400

CHAPTER 13: FEATURE DATA MANAGEMENT 403

Use of GUID in ArcObjects 404

Working with the Geodatabase Model 406

Creating Geodatabases 407

Creating FeatureDatasets and FeatureClasses 408

Working with Features 418

Creating New Features 418

Modifying Existing Features 422

Summary 426

CHAPTER 14: ADVANCED TOPICS IN ARCOBJECTS
PROGRAMMING AND DEPLOYMENT 429

Sharing State and Functionality between Components 430

Event Handling in ArcObjects 432

Application Extension 435

Add-In Deployment 450

Preparing for Release 450

ftoc.indd xixftoc.indd xix 25/02/13 4:06 PM25/02/13 4:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xx

CONTENTS

Add-In File Structure 452

Distributing and Installing an Add-In 453

Custom Component Deployment 456

Creating an Installer for Custom Component 459

Summary 465

APPENDIX: ANSWERS TO CHAPTER EXERCISES 467

INDEX 479

ftoc.indd xxftoc.indd xx 25/02/13 4:06 PM25/02/13 4:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

WELCOME TO Beginning ArcGIS for Desktop Development Using .NET. If you have always wanted
to start your journey in the world of ArcObjects, this book is your perfect one-stop resource.

Whether you are a new ArcGIS user with no background in programming or a programmer with
a little experience in the ArcGIS platform, this book helps you be more productive. This book
starts with the basics and brings you thoroughly up to speed. You fi rst discover all you need to
know about .NET programming for developing ArcObjects: variables, fl ow control, object-oriented
programming, and interface-based programming. Then the book helps you build skills
for developing ArcObjects and creating Desktop Add-Ins; reading object model diagrams; querying
data; working with symbology, the geometry of geospatial data, and geoprocessing; and fi nally,
deploying code.

WHO THIS BOOK IS FOR

This book is for anyone who wants to learn how to customize and extend Esri’s ArcGIS for Desktop
applications using .NET. It is intended for anyone who wants to learn ArcObjects step by step. With
the knowledge gained after reading this book, you will be able to build different kinds of add-ins
and traditional ArcObjects developments in Visual Studio.

No prior background in programming is assumed, and anyone familiar with ArcGIS should be able
to follow the examples. It does help, however, if you have a basic understanding of .NET and COM.
The book starts with programming in .NET and ends by covering deployment topics. Each chapter
is built on the knowledge gained in previous chapters.

This book is also for anyone who knows how to customize and develop ArcGIS using Visual Basic
for Application (VBA) or Visual Basic 6. If this is your interest, you’ve gained a lot from the new
capabilities of the 10.X versions of ArcGIS.

All example code in this book is presented in C#, which can be easily converted to Visual Basic.NET.
If you are a hard-core fan of VB.NET don’t worry. All the source code used in this book is available
for download in both C# and VB.NET at www.wrox.com (for more information, see the “Source
Code” section later in this introduction).

WHAT THIS BOOK COVERS

This book walks you through ArcGIS development from the very fi rst steps to the deployment
phase. You will learn that it is a simple task to customize and develop ArcGIS for Desktop
applications — this process isn’t as hard as it seems at fi rst. In other words, developing
ArcObjects is not rocket science.

flast.indd xxiflast.indd xxi 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.wrox.com
http://VisualBasic.NET
http://VB.NET
http://VB.NET
http://www.it-ebooks.info/

xxii

INTRODUCTION

This book uses the latest version of ArcGIS, which is ArcGIS 10.1. All the code examples are
tested to work in version 10.0 as well. The focus of this book is on creating a new model of ArcGIS
customization: the Desktop Add-In (or add-in for short). Unfortunately, the add-in model is not
available for previous versions of ArcGIS (8.x and 9.x). However, if you have one of the older
versions, you can still use this book to create traditional ArcObjects projects (Extending ArcObjects
Template in Visual Studio).

HOW THIS BOOK IS STRUCTURED

This book is divided into three parts. The following explains each of these three parts in detail, and
what each chapter covers.

Part I: The Basics

Throughout Chapters 1 and 2, you will see different approaches for customizing ArcGIS for
Desktop applications.

 ➤ Chapter 1, “Why Geospatial Is Special”: This chapter shows you some unique
characteristics of geospatial data. Then it explains the different kinds of GIS software and
provides a high-level survey of the ArcGIS platform. The chapter fi nishes with an overview
of the major approaches for storing and managing geospatial data.

 ➤ Chapter 2, “Introduction to ArcGIS for Desktop Applications Customization”: Chapter 2
looks at different approaches for customizing ArcGIS for Desktop applications. It introduces
techniques for customizing the user interface, Python scripting, Desktop Add-Ins, and
extending ArcObjects. For each approach, I present at least one Try It Out example to show
you how the different approaches fi t together.

Part II: .NET Programming Fundamentals

In Chapters 3 and 4, you gain the necessary knowledge of .NET programming to put
ArcObjects to work.

 ➤ Chapter 3, “.NET Programming Fundamentals, Part I”: Chapter 3 explains the basic
elements of C# that are necessary for successful ArcObjects development. The chapter
covers topics such as variables, arrays, operators, decision making, iteration, object
manipulation, enumeration, and the basics of object-oriented programming. When you
complete this chapter, you will have good knowledge of implementing properties, methods,
and constructors for classes.

 ➤ Chapter 4, “NET Programming Fundamentals, Part II”: This chapter is the second and
fi nal chapter on pure .NET programming. You complete the big picture of object-oriented
programming in C# by exploring object-oriented principles and techniques. I explain the
concept of types in .NET and how reference types differ from value types. The fi nal topics
in this chapter include accessing fi les and folders and creating a simple KMZ (Keyhole
Markup Language Zipped) fi le.

flast.indd xxiiflast.indd xxii 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxiii

INTRODUCTION

Part III: ArcObjects Programming

Throughout the chapters in this part, you learn ArcObjects programming from the ground up.

 ➤ Chapter 5, “Understanding ArcObjects Object Model Diagrams”: Part III starts with one
of the fi rst things you have to know in the ArcObjects world — object model diagrams.
Chapter 5 shows you how to read and interpret the different symbols of object model
diagrams that are part of ArcObjects developer help. In addition, this chapter describes the
technique of interface-based programming.

 ➤ Chapter 6, “Accessing Maps and Layers”: You put your knowledge of reading object model
diagrams to work and use various classes in ArcObjects to access various properties of maps
and layers. You also create your fi rst add-in button to get basic information about existing
Data Frames and layers in the main window of ArcMap.

 ➤ Chapter 7, “Working with Tables and FeatureClasses”: Tables and FeatureClasses are the
most common structures for storing geospatial data in the ArcGIS platform. You learn how
to access existing tables and FeatureClasses inside a map and how to add and delete a fi eld
in a table. Finally, this chapter looks at the topic of creating tables and records.

 ➤ Chapter 8, “Subsets of Records”: Querying geospatial data and working with selections
are explored in this chapter. It also explores cursors and calculating simple statistics out of
numeric fi elds.

 ➤ Chapter 9, “Constructing and Using the Geometry of Features”: This chapter explains how
to create different types of geometries for different types of features. As a related topic, this
chapter explores the most common types of geoprocessing analysis, such as buffer, overlay,
and union using the ArcObjects Geometry library.

 ➤ Chapter 10, “Rendering Geospatial Data and Using Hyperlinks and MapTips”: This
chapter presents an overview of setting symbology for vector and raster layers and explores
some types needed when working with Renderer classes. The contents of this chapter can be
divided into two parts: The fi rst part discusses how to change the appearance of geospatial
data, and the second part deals with how to make features to go beyond display through
hotlinks, hyperlinks, and MapTips.

 ➤ Chapter 11, “Labeling, Exporting ActiveView, and Working with Elements”: This
chapter covers some topics related to creating softcopy output out of geospatial data.
This chapter presents an overview of making different kinds of labels using the standard
and Maplex labeling engines. Exporting an ActiveView is also covered in detail, and
fi nally you learn about working with elements and getting prebuilt items from the Style
Manager.

flast.indd xxiiiflast.indd xxiii 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxiv

INTRODUCTION

 ➤ Chapter 12, “Geoprocessing with Tools and Models”: Chapter 12 focuses on the
geoprocessing framework. Geoprocessing is a core and indispensable part of any GIS
software. Users of ArcGIS perform geoprocessing via ArcToolbox. This chapter provides an
overview of using the geoprocessing framework in code and shows you how to execute tools
and models as well as background geoprocessing.

 ➤ Chapter 13, “Feature Data Management”: This chapter provides an overview of the most
widely needed topics in geospatial data management in ArcObjects for vector data. Topics
such as spatial reference systems, exporting features, creating geodatabases, and assigning
domains to fi elds are explained.

 ➤ Chapter 14, “Some Advanced Topics in ArcObjects Programming and Deployment”:

This chapter explains some advanced topics such as sharing state and functionality between
components, creating application extensions, and wiring ArcObjects events. In addition this
chapter illustrates how to create setup projects and confi gure them to make an easy-to-use
installer package. A custom behavior is sometimes needed during the setup procedure, such
as reading and writing registry keys. This chapter demonstrates how to create this custom
behavior in order to perform appropriate actions.

The fi nal part of the book is the Appendix:

 ➤ Appendix, “Answers to Exercises”: Answers to all the questions asked at the end of each
chapter are presented in this appendix.

WHAT YOU NEED TO USE THIS BOOK

To use the examples in this book, in addition to ArcGIS Desktop 10.0 or ArcGIS for Desktop 10.1,
you need at least .NET 3.5 sp1 (service pack 1), which is installed with ArcGIS for Desktop 10.0 and
10.1. You also need an Integrated Development Environment (IDE) to be able to write code. You can
use any IDE from Microsoft that supports .NET 3.5 sp1. The following is a list of available IDEs
that can be used to develop add-ins for ArcGIS Desktop 10.0 and ArcGIS for Desktop 10.1:

 ➤ Supported IDEs for version 10.0:

 ➤ All editions of Visual Studio 2008 including Express

 ➤ All editions of Visual Studio 2010 except Express

 ➤ Supported IDEs for version 10.1:

 ➤ All editions of Visual Studio 2010

In addition to ArcGIS and an IDE, you need to install ArcObjects SDK for Microsoft
.NET Framework, which comes with ArcGIS for Desktop. The following table provides
a summary of all required software packages:

flast.indd xxivflast.indd xxiv 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxv

INTRODUCTION

REQUIRED SOFTWARE PACKAGES FOR THIS BOOK

TITLE PACKAGE

GIS software ArcGIS for Desktop 10.1 or ArcGIS Desktop 10.0

Integrated Development

Environment

For ArcGIS for Desktop 10.1: all versions of Visual Studio 2010

For ArcGIS Desktop 10.0: all versions of Visual Studio 2008 and all

versions of Visual Studio 2010 except Visual Studio 2010 Express

Software Development Kit ArcObjects SDK for .NET

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, I use a number of
conventions throughout the book:

WARNING Boxes like this one hold important, not-to-be-forgotten information
directly relevant to the surrounding text.

NOTE Boxes like this one indicate notes, tips, hints, tricks, and asides to the cur-
rent discussion.

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the source code.

How It Works

Following each Try It Out, I explain in detail the code you’ve typed.

flast.indd xxvflast.indd xxv 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xxvi

INTRODUCTION

As for styles in the text:

 ➤ I italicize important words when I introduce them.

 ➤ I show URLs and code within the text in a special monofont typeface, like this:
persistence.properties.

I present code in two different ways:

I use a monofont type for most code examples.

I use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com. Specifi cally for this book, the code download is
on the Download Code tab at:

www.wrox.com/remtitle.cgi?isbn=1118442547

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-118-
44254-8) to fi nd the code. A complete list of code downloads for all current Wrox books is available
at www.wrox.com/dynamic/books/download.aspx.

At the beginning of each chapter, I provide the name of the folder on Wrox.com that contains the
code for that chapter. Throughout each chapter, you also fi nd references to the names of code fi les as
needed in listing titles and text.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, decompress it with an appropriate
compression tool.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-44254-8.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may

flast.indd xxviflast.indd xxvi 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://Wrox.com
http://www.wrox.com
http://www.it-ebooks.info/

xxvii

INTRODUCTION

save other readers hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to

www.wrox.com/remtitle.cgi?isbn=1118442547

Click the Errata link. On this page, you can view all errata that has been submitted for this book
and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers participate in these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, read the P2P FAQs for answers to questions
about how the forum software works, as well as many common questions specifi c to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxviiflast.indd xxvii 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://P2P.WROX.COM
http://www.it-ebooks.info/

flast.indd xxviiiflast.indd xxviii 25/02/13 12:33 PM25/02/13 12:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

The Basics

 � CHAPTER 1: Why Geospatial Is Special

 � CHAPTER 2: Introduction to ArcGIS for Desktop Applications

Customization

c01.indd 1c01.indd 1 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c01.indd 2c01.indd 2 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Why Geospatial Is Special

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Main reasons that geospatial data are special

 ➤ Some sources of errors in using and collecting geospatial data

 ➤ Major types of GIS software

 ➤ A brief description of the ArcGIS platform

 ➤ Various geospatial data storage models

 ➤ Diff erent types of Esri geodatabases

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter01 folder and
is individually named according to the names throughout the chapter.

Geospatial data have played a major role in human life for centuries. Almost all human
activities and decisions contain geospatial components. Collecting, managing, processing,
and representing various kinds of geospatial components are accomplished by various kinds
of geotechnologies, including GIS (Geographical Information System), remote sensing,
photogrammetry, cartography, surveying, and GPS (Global Positioning System), to name
just a few. Many research organizations have identifi ed geotechnology, nanotechnology, and
biotechnology as the three most important emerging fi elds. There is no doubt that the need for
geospatial data and use of geotechnologies will continue to grow for years to come.

GIS is the heart of geotechnologies and Esri’s ArcGIS is the most widely used and powerful
commercial GIS software. In this chapter, you will learn various categories of GIS software
and see how the ArcGIS platform provides software products for each category. After
reading this chapter, you will know what makes the ArcGIS platform compelling to users and
developers alike.

1

c01.indd 3c01.indd 3 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

4 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

NOTE Esri is the worldwide leading supplier of GIS software and services. The
company was founded as Environmental Systems Research Institute in 1969
by Jack and Laura Dangermond. Today Esri products (particularly ArcGIS for
Desktop applications) have more than 40 percent of the global market share.

A TOUR OF GEOSPATIAL DATA

Nowadays, in order to create a map or collect geospatial data with a handheld GPS device, all the
necessary steps are:

 1. Turn on the GPS receiver.

 2. Walk around and periodically click the button with the “Mark” label, or simply let the
device collect data for you constantly.

 3. Connect the GPS receiver to the computer and let the software draw a map for you. Even
better, have the small screen of the device itself display the map.

Simple stuff, right? Collecting and using geospatial data like this is very common today. Millions
of people explore the world on www.OpenStreetMap.org, which collects and updates most of
its geospatial data in the mentioned fashion (called crowdsourcing). Geocaching is another fun
example of using and collecting geospatial data. Geocaching is a low-cost sport in which a person
(called a geocacher) uses a GPS device to fi nd something that was hidden by other geocachers.
Technically speaking, geocaching is fun outdoor navigation with GPS devices.

As a more recent simple example of using and collecting geospatial data, consider the W3C
Geolocation Application Programming Interface (API) specifi cation. This API provides the location
of a device (desktop, handheld without GPS, handheld with GPS, etc.) through location information
servers in standard and transparent fashion directly from the web browser. The Geolocation API is
implemented in almost all modern web browsers, including Microsoft Internet Explorer, Mozilla
Firefox, Google Chrome, Apple Safari, and Opera. The following Try It Out demonstrates the
simplest example of using Geolocation API.

TRY IT OUT Using the Geolocation API to Get the Current Location

 (TheSimplestExample.htm)

 1. Open the text editor of your choice (like Windows Notepad). You also can use any HTML editor,
but for this example, a simple text editor suffi ces.

 2. Enter the following statements:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Simple Usage of Geolocation API </title>
 <script type="text/javascript">
if (window.navigator.geolocation)
{ navigator.geolocation.getCurrentPosition(getLocationCallback,errorCallback);

c01.indd 4c01.indd 4 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.OpenStreetMap.org
http://www.it-ebooks.info/

A Tour of Geospatial Data ❘ 5

 } else {
 alert('Unfortunately your web browser does not support Geolocation API.');
 }

 function getLocationCallback(location) {
 var geospatialMessage = '';
 geospatialMessage += "Your geographic location is:\n\n";
 geospatialMessage += 'Latitude: ' + location.coords.latitude + "\n";
 geospatialMessage += 'Longitude: ' + location.coords.longitude + "\n";
 alert(geospatialMessage);
 }

 function errorCallback(error) {
 alert("something wrong !");
 }
 </script>
</head>
<body></body>
</html>

 3. Save the fi le with the name of “TheSimplestExample.htm”. In Notepad, make sure that you enter
the double quotation marks before and after the name of the fi le in order to save it as an .htm fi le.

 4. Close your text editor. You are now ready to test the Geolocation API. Open the fi le with Internet
Explorer 9.0, Firefox 3.5, or Opera 10.6 (or newer versions of these Web browsers). As Figure 1-1
shows, you are asked if you would like to share your location with the Web page.

FIGURE 1-1

 5. If you click the Share Location button, you will see the screen
shown in Figure 1-2, which, strangely, shows a location even if
you are sitting in front of your computer using a dial-up modem
to connect to the Internet. FIGURE 1-2

c01.indd 5c01.indd 5 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

6 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

How It Works

To see the purpose and use of the Geolocation API, let’s begin by examining the code. The code fi rst
checks for support of the Geolocation API in your browser with the following statements:

if (window.navigator.geolocation){
 navigator.geolocation.getCurrentPosition(getLocationCallback,errorCallback);
} else{
 alert('Unfortunately your web browser does not support Geolocation API.');
}

If the browser supports the Geolocation API, the script calls the getCurrentPosition function and
passes the names of two other functions. If the browser does not support the Geolocation API, the
script alerts the user.

 6. If you enter those numbers in an online mapping application like Microsoft Bing Maps (www.bing
.com/maps), you will notice that it is the approximate location of the device that provides location
information to your browser, GPS, or any other device. (See Figure 1-3.)

FIGURE 1-3

c01.indd 6c01.indd 6 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.bing.com/maps
http://www.bing.com/maps
http://www.it-ebooks.info/

A Tour of Geospatial Data ❘ 7

The fi rst function will be called if the Geolocation API successfully gets the current position of the
browser and will report the current position:

function getLocationCallback(location) {
 var geospatialMessage = '';
 geospatialMessage += "Your geographic location is:\n\n";
 geospatialMessage += 'Latitude: ' + location.coords.latitude + "\n";
 geospatialMessage += 'Longitude: ' + location.coords.longitude + "\n";
 alert(geospatialMessage);
 }

The second function is called if the Geolocation API fails to locate the current position of the browser.

NOTE Instead of getting the position directly from the getCurrentPosition
function, we have to pass the names of two functions as input. The reason
for passing the names of two other functions is that behind the scenes, the
Geolocation API makes use of many calls to other resources to get the browser’s
position. As a result, we have to use the Geolocation API in asynchronous
 fashion with the help of callback functions.

HOW THE GEOLOCATION API WORKS

How the Geolocation API works is out of the scope of this book, but briefl y,
 consider that every device that is connected to any network can be located. Various
methods exist for locating devices in many different kinds of networks. In fact,
the Geolocation API is a very high-level API, and it doesn’t provide the positional
information itself. It uses the network infrastructure to get the position. If the device
(for example, a smartphone or tablet) has a built-in GPS receiver, the Geolocation
API gets the position using the device’s GPS receiver. If the cellphone doesn’t have a
built-in GPS receiver, the Geolocation API uses the location information services of
the mobile communication network to get the positional information (it could be as
simple as cell-ID of the wireless network). Even if you use your desktop computer
to connect to the Internet, your location is available to the Geolocation API using
your IP address (or the IP address of your Internet service provider). As a developer,
it doesn’t matter how the positional information becomes available or how the
 Geolocation API fi nds the position. All that matters is that it provides positional
information for any kind of device as long as it is connected to a network.
Based on the device and network, it provides various levels of accuracy. Again,
simple stuff, right?

c01.indd 7c01.indd 7 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

8 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

If you understand how geospatial data are used today by the Geolocation API, GPS devices, Google
Earth, and so on, you might ask yourself: if collecting and using geospatial data is so simple, why
do the techniques, concepts, and sciences like the Geospatial Information Science (GISc), Location
Based Services (LBS), and Spatial Decision Support Systems (SDSS) exist at all? In other words,
is it all about software? If it is all about software, we can use and collect geospatial data just like
any other kind of data. But geospatial data are different kinds of data and special methods and
techniques have to be created and developed to handle them. The following sections briefl y discuss
what is special about geospatial data.

WHY GEOSPATIAL IS SPECIAL

Today, all human activities and decisions have a geospatial component, and maps are the most
widely used type of geospatial component. Most of the time, we are exploring maps in many
different kinds of media — such as TV channels, newspapers, mobile apps, websites, and even
the small display of a car navigation system to fi nd an address, a best route, a nearest facility,
tomorrow’s weather, and so on. In contrast to what they seem at fi rst, using and collecting
geospatial data are not so simple.

In its basic form, a geospatial component is a pair of geographic coordinates called latitude and
longitude, which are used to represent the location of a point on the surface of the earth. The
latitude and longitude belong to geographic coordinate system space, so they are called geographic
coordinates.

As we already know, earth is not a perfect sphere. Mathematically speaking, among 3D shapes,
spheroid provides the best approximation of earth. This approximation injects a variable amount of
errors in all geospatial-related activities (from representation to processing) of geospatial data.

Spheroid is a 3D shape, so in order to represent it on the 2D plane of display screens (like a map
or the screen of any device), the 3D spheroid has to be projected on a fl at coordinate system. This
is called projection or map projection. All map projections distort geospatial components in
some way. If you take a look at Greenland (with an area of 2,166,086 km2) as it is represented
in Microsoft Bing Maps (www.bing.com/maps), you will notice that it is drawn a little larger
than South America (with an area of 17,840,000 km2; see Figure 1-4). This map has a map
projection that distorts the area of geospatial features. In spite of this, most of the time we use
and work with a projected coordinate system in which geospatial data are projected on the fl at
coordinate system.

Depending on the purpose of the map, some distortions are acceptable and others are not. Different
map projections exist in order to preserve some properties of the spheroid (or any other 3D shape)
at the expense of other properties. This is an additional source of error in using and collecting data.
Moreover, the sources of geospatial data have their own errors too. For example, most handheld
GPS devices provide accuracy for no more than several meters, which might not be acceptable in
many engineering projects.

c01.indd 8c01.indd 8 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.bing.com/maps
http://www.it-ebooks.info/

Why Geospatial Is Special ❘ 9

What about processing? Any kind of geospatial processing needs precise geospatial data with a
known coordinate system. (As mentioned previously in this section, coordinate systems come in
two fl avors: projected and geographic.) Many processing methods of geospatial data can be applied
to various spaces, like the human body, for example, as is done for analysis of the human body
with medical images. There are also many processing methods that are specifi c to geospatial data,
which in most cases are very complex and time consuming. Even with the horsepower of today’s
computers, most PCs and laptops aren’t designed to handle the intense workload of geospatial
processing. The simple reason for such a huge workload is the high volume and unstructured nature
of geospatial data. For example, a polygon can have at least three and at most millions of points as
its point collection.

So to manage geospatial data effectively, we have to resort to databases, in which case, each activity
for querying, visualizing, editing, and geospatial processing includes interaction with the database.
Besides the distinctive techniques needed for managing geospatial data inside databases (such as

FIGURE 1-4

c01.indd 9c01.indd 9 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

indexing geospatial data for quick retrieval), to make matters even more complicated, one of the
unique aspects of geospatial data is the relationships that they can have. In addition to regular
relational relationships (like parent-child relationships), geospatial data can have many topological
relationships, which is the arrangement for how point, line, and polygon features share their
geospatial components or geometry.

In addition to various kinds of errors, huge volumes of data, special types of relationships,
complexity of processing, the need for coordinate systems, and various kinds of representation,
editing geospatial data usually requires long transactions, which is rare in managing other kinds
of data. Simply put, a transaction is a package of units of work on data that must be done in all-
or-nothing mode. Editing non-geospatial data in most cases must be done in a fraction of a second
(e.g., transactions in fi nancial systems like banks). In contrast, any edit of geospatial data (inserting
new features, updating and deleting existing features) might take a few minutes to several months
to be completed. For this reason, geospatial data must be managed in quite different information
systems. Those are the quick answers to the question asked at the beginning of this section: Why are
geospatial data so special?

NOTE For in-depth exploration of why geospatial data are special, read
Geographic Information Systems and Science, third edition, by Paul A. Longley,
Michael F. Goodchild, David J. Maguire, and David W. Rhind (John Wiley & Sons,
Inc., 2011).

As I said at the beginning of this chapter, nearly all activities and decisions of humans
contain geospatial components. Collecting, managing, processing, and representing various
kinds of geospatial components are accomplished by geotechnologies, which include GIS, remote
sensing, photogrammetry, cartography, surveying, and GPS, just to name a few. GIS is the heart of
geotechnologies. I think of it this way: If geotechnologies were a human, GIS would be the brain.

NOTE There are a lot of good books on geotechnologies. Most of them focus
on a specifi c geotechnology. But if you are more interested in a brief introduc-
tion to almost all geotechnologies, then read Basics of Geomatics by Mario A.
Gomarasca (Springer, 2009).

GIS consists of six components: hardware, software, people, data, methods, and network. The focus
of this book is on the software component. The next section delves into the GIS software topic.

VARIOUS KINDS OF GIS SOFTWARE

GIS software is a collection of computer programs that store, retrieve, query, process, and visualize
geospatial data. Based on functionality and type of users, the main categories of GIS software are
server GIS, desktop GIS, developer GIS, and mobile GIS. To introduce these main categories of GIS
software, this section focuses on the Esri ArcGIS platform.

c01.indd 10c01.indd 10 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Various Kinds of GIS Software ❘ 11

Server GIS

As the name implies, server GIS is all about serving geospatial resources to its clients over networks
(such as the Internet). It is fair to say that currently, the Web is used almost exclusively in server GIS to
share geospatial resources. Geospatial resources could be maps (images of geospatial data), geospatial
data, processing services, geospatial metadata, and so on. Based on who consumes the geospatial
resources, this category has three subcategories: web GIS, GIS web services, and geospatial data access.

People use web GIS applications for many purposes. A web GIS application could be as simple as a
website with a slippy map that provides search capability and navigation controls such as zoom in/out
and pan (like most web mapping applications such as www.OpenStreetMap.org), or as sophisticated
as a web application that provides processing and editing of geospatial data and contains tools for data
management activities and workfl ows (such as http://gis.hudson.oh.us/HudsonSL/).

In contrast to web GIS applications, GIS web services are consumed by other applications. Other
applications call GIS web services to get access to geospatial resources. Users of those applications may
never know about this fact. The Open Geospatial Consortium (OGC) has played an important role
in the evolution of GIS web services. Specifi cally, OGC has tried to provide interoperability between
GIS software through the development of standards that facilitate sharing and accessing geospatial
resources. Among the most widely used standards are Geography Markup Language (GML), Keyhole
Markup Language (KML), Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage
Service (WCS). GML and KML are XML-based formats and are explained later in this chapter.
WMS, WFS, and WCS are GIS web services that provide access to map data (an image of geospatial
data), vector geospatial data, and raster geospatial data, respectively. If you enter the following URL
into the address bar of your web browser, you will see the image shown in Figure 1-5:

http://webservices.nationalatlas.gov/wms?SERVICE=WMS&REQUEST=GetMap&VER
SION=1.1.1&FORMAT=PNG&WIDTH=600&HEIGHT=425&SRS=EPSG:4326&BBOX=-170,20,-
65,85&LAYERS=states,farm_1

FIGURE 1-5

c01.indd 11c01.indd 11 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.OpenStreetMap.org
http://gis.hudson.oh.us/HudsonSL/
http://webservices.nationalatlas.gov/wms?SERVICE=WMS&REQUEST=GetMap&VERSION=1.1.1&FORMAT=PNG&WIDTH=600&HEIGHT=425&SRS=EPSG:4326&BBOX=-170,20,-65,85&LAYERS=states,farm_1
http://webservices.nationalatlas.gov/wms?SERVICE=WMS&REQUEST=GetMap&VERSION=1.1.1&FORMAT=PNG&WIDTH=600&HEIGHT=425&SRS=EPSG:4326&BBOX=-170,20,-65,85&LAYERS=states,farm_1
http://webservices.nationalatlas.gov/wms?SERVICE=WMS&REQUEST=GetMap&VERSION=1.1.1&FORMAT=PNG&WIDTH=600&HEIGHT=425&SRS=EPSG:4326&BBOX=-170,20,-65,85&LAYERS=states,farm_1
http://www.it-ebooks.info/

12 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

Yes, you are right: It is a map from the national atlas of the United States. The text preceding the
question mark (“?”) is the address of the WMS service of National Atlas. Everything after
the question mark (called the query string) is a key-value pair in the form of key=value. You can
see by looking at the query string that the web browser requests an image of geospatial data with
the following characteristics:

 ➤ Format of the image, requested as Portable Network Graphics (FORMAT=PNG).

 ➤ Size in pixels with two keys — width and height (WIDTH=600, HEIGHT=425).

 ➤ Spatial Reference System (SRS) in European Petroleum Survey Group (EPSG) coding scheme
(SRS=EPSG:4326). This SRS code is the other name for the World Geodetic System of 1984
(or WGS 84), which is a well-known geographic coordinate system. (Remember latitude and
longitude?)

 ➤ Bounding box of the area in terms of minX, minY, maxX, and maxY
(BBOX=-170,20,-65,85).

 ➤ Layers constituting the map (LAYERS=states,farm_1).

This usage of WMS isn’t suitable for human users — quite the opposite — but other GIS software
can use this method easily. GIS web services provide an interface for other GIS software instead of
a user interface for human users. Did you notice what programming language or database is used
to implement the WMS functionality? Again, it is transparent to users of WMS (both users are
software applications). No matter what software infrastructure (operating system, middleware,
programming language, and database) is used to implement the service, all that matters is that they
can be used in platform-neutral fashion to provide valuable geospatial resources. Using GIS web
services provides an effi cient and simple way of sharing and accessing geospatial resources. Today,
thousands of organizations all around the world provide GIS web services to make it easy to access
and share very large amounts of data.

Various GIS software products can consume GIS web services. Consuming GIS web services is in
most cases as simple as adding a geospatial layer to the GIS software. You see an example of this
in the “Using a GIS Web Service Inside ArcMap” Try It Out, later in this chapter. Even GIS web
services can use other GIS web services to build a composite GIS web service.

NOTE The ability to combine GIS web services brings a new opportunity to
make GIS software a composite of autonomous, general purpose, and reusable
GIS web services. This is where Service Oriented Architecture (SOA) and cloud
computing (Software as a Service, or SaaS) come into play. In the ArcGIS plat-
form, ArcGIS online provides huge geospatial resources that are ready to use
over the Web inside Esri’s secure cloud. Coverage of ArcGIS online is beyond the
scope of this book.

ArcGIS for Server (formerly known as ArcGIS Server) provides necessary tools and functionality
to create web GIS and GIS web services easily. Thanks to ArcGIS for Server, by confi guring
some simple settings (mostly just selecting appropriate options from check boxes), you can build
sophisticated web GIS applications and GIS web services without a single line of code. Although

c01.indd 12c01.indd 12 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Various Kinds of GIS Software ❘ 13

replaced by ArcGIS for Server, ArcIMS is worth mentioning. ArcIMS provided an easy way to create
and develop web GIS software.

ArcGIS for Server has another subcategory. Let’s call it geospatial data access, which provides access
to geospatial data inside databases. Geospatial data access doesn’t store data; rather, it provides the
necessary tools and utilities to enable Database Management System (DBMS) software to manage
geospatial data. In this case, it doesn’t matter that a DBMS is able or not to handle geospatial
data natively; all that matters is that geospatial data access software uses DBMS as a repository of
geospatial data. Unlike web GIS and GIS web services, geospatial data access is not an independent
product. In other words, it doesn’t provide user interface for human users, and it does not provide
an interoperable and public interface for other systems. Geospatial data access works with the other
components or software in a GIS system to enable management of geospatial data inside a DBMS.
In the ArcGIS platform, ArcSDE plays this role. It is part of ArcGIS for Server software.

NOTE Spatial DBMS is another kind of server GIS explained in the section
“Geospatial Data Inside Spatial DBMS,” later in this chapter.

Desktop GIS

Desktop GIS is GIS software installed on the user’s computer that provides a range of capabilities.
Conventional desktop GIS provides users all the tools needed to perform geospatial-related
activities. The desktop GIS is without a doubt the largest category of GIS software in the
professional GIS community, and for this reason we divide it into viewer, virtual globe,
and professional subcategories.

Desktop viewers provide simple display and query capabilities. Usually they provide no tools for
data editing and processing. But desktop viewers in most cases are free, and they help to create de
facto standards, terminology, and formats for specifi c vendors. ArcReader is free downloadable
software from Esri that provides easy-to-use tools for working with geospatial data. Use of
ArcReader is limited to geospatial data, which are packaged using ArcGIS for Desktop ArcPublisher
extension. In other words, you can’t add your local geospatial data to the map (there is no “add
data” button!). ArcGIS Explorer is the other free desktop viewer software from Esri (which has
add-data capability). In its latest version (Build 1750), it provides both a 2D and a 3D view of
geospatial data as well as adding online geospatial resources such as geoprocessing models. Being
able to represent and process data in 3D, ArcGIS Explorer belongs to both viewer and virtual globe
subcategories.

As the name suggests, a desktop virtual globe is primarily used for viewing and analyzing 3D
geospatial data. Google Earth is a successful example of a desktop virtual globe. Since they are low
cost (and in most cases, free at the basic versions), desktop virtual globes have gained considerable
traction in the GIS and non-GIS communities. ArcGlobe is desktop virtual globe, and ArcScene is
desktop 3D modeling software in the ArcGIS platform. They can be used for visualization, analysis,
and animation of 3D geospatial data. ArcGlobe uses a globe-shaped surface and just one map
projection to visualize all 3D data, which makes it the best choice for visualizing geospatial data at
global scales. In contrast, ArcScene usually uses planar projections and is best suited for regional
scales.

c01.indd 13c01.indd 13 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

14 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

 3. Click the Up One Level arrow several times to get to the Home folder, as shown in Figure 1-7.

Professional desktop GIS products are full-featured GIS software and usually contain tools for
collecting, editing, and analyzing geospatial data. In addition, professional desktop GIS products
provide many tools for making various kinds of visual output and reports from geospatial data.
They often include necessary tools for geospatial data management and administration. ArcMap
and ArcCatalog are two professional desktop applications included in the ArcGIS for Desktop
applications package that provide a full range of geospatial capabilities. ArcMap is the main
mapping application of the ArcGIS platform. It is used for collecting, editing, analyzing, visualizing,
and publishing geospatial data. ArcCatalog is primarily used for geospatial data management and
administration. In the following Try It Out, you learn how ArcMap uses a GIS web service.

TRY IT OUT Using a GIS Web Service inside ArcMap

 1. Ladies and gentleman, start your engines by running ArcMap, and be sure you are connected to
the Internet (actually, the Web, the Internet’s major application).

 2. Click the Add Data button, shown in Figure 1-6, to open the Add Data dialog box.

FIGURE 1-6

FIGURE 1-7

 4. Double-click the GIS Servers folder to display its contents, as shown in Figure 1-8.

c01.indd 14c01.indd 14 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Various Kinds of GIS Software ❘ 15

 5. Double-click Add WMS Server to open the Add WMS Server window. Enter the address of the
WMS service for the national atlas of the United States (http://webservices.nationalatlas
.gov/wms) into the URL textbox and click the Get Layers button.

 6. If there is no problem, you should see the list of layers shown in Figure 1-9. Click OK.

FIGURE 1-8

FIGURE 1-9

c01.indd 15c01.indd 15 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://webservices.nationalatlas.gov/wms
http://webservices.nationalatlas.gov/wms
http://www.it-ebooks.info/

16 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

 8. If you scroll down the layer list and turn
on the layer with the name Agriculture-
Farms 2007-Average Size of Farms in
Acres, you will see the same layer that
you saw in your browser in the “Using
the Geolocation API to Get the Current
Location” Try It Out, earlier in this
chapter. Also, if you double-click the layer
to open the Layer Properties window, you
will notice that the name of the layer is
“farm_1” (see Figure 1-11). Where have
you seen this name before?

How It Works

As mentioned earlier, using the WMS service is
as simple as adding a layer. When we enter the
URL address of the WMS service and click
the Get Layers button in the Add WMS Server window, ArcMap sends a request to the WMS service
and asks about the capabilities of the service. The service responds with a document called a capabilities

 7. A new node for WMS is added to the GIS Servers folder. Double-click it to add all layers to the
map. You will see lots of layers added to the map, as shown in Figure 1-10.

FIGURE 1-10

FIGURE 1-11

c01.indd 16c01.indd 16 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Various Kinds of GIS Software ❘ 17

document. Using the capabilities document, ArcMap recognizes layers which can be served by the ser-
vice. From this point, you can use layers from the WMS service as you would any map layers and let
ArcMap take care of interaction with WMS.

NOTE As you can see, the capabilities document is intended to be used by soft-
ware. But it is a human-readable XML document as well. If you want to retrieve
the capabilities document of the mentioned WMS, enter the following URL
into the address bar of your web browser:

http://webservices.nationalatlas.gov/wms?request=getCapabilities

Developer GIS

When you want to build specifi c-purpose and highly fl exible GIS software, you have two options:
build the software from the ground up, or alternatively, make use of ready-to-use components
to build the software. As you now know, geospatial data are special, so in addition to the usual
tasks for building any kind of software, there are many special techniques and methods to
perform even simple tasks in GIS software. Remember that putting some pushpins or markers
on Bing Maps or Google Maps, making mashups, or creating fl ashy layouts is not considered
GIS software. When considering geospatial data from different sources with various errors and,
most notably, different kinds of coordinate systems, even a simple distance measurement tool can
become a nightmare for a team of knowledgeable developers. As a result, many organizations
use ready-to-use tools and components to save money and time rather than implementing the
software from the ground up. In general, tools and components, along with documentation
and additional utility software, are packaged together in a Software Development Kit (SDK).
Developer GIS products are SDKs that provide developers the tools they need to customize
existing GIS packages or create new GIS applications. The main audiences of this kind of
GIS software are brave developers like you and me. An SDK can be used to customize existing
software or it can be used to create brand new software. All aspects of serious development of
GIS software are considered developer GIS. Many fl avors of GIS software exist, and in turn,
there also are many kinds of developer GIS (or SDKs). The following list constitutes a brief
explanation of development opportunities in the ArcGIS platform. (Chapter 2 introduces ArcGIS
desktop application development.)

 ➤ In the Esri desktop GIS arena, there are ArcGIS desktop SDKs, an ArcGIS engine SDK, and
an ArcGIS Explorer SDK.

 ➤ ArcGIS for Desktop provides two SDKs (.NET SDK and Java SDK) for customization
of ArcGIS for Desktop applications (ArcMap, ArcCatalog, ArcGlobe, and ArcScene).

 ➤ In the ArcGIS platform, the ArcGIS Engine is considered the main developer GIS for
building brand new GIS applications. It is, in almost all cases, used for creating high-end,
specifi c-purpose, and fl exible desktop GIS software.

 ➤ ArcGIS Explorer has its own SDK, which provides easy and neat ways to customize the look
and feel of the user interface, as well as extend its functionality using .NET.

c01.indd 17c01.indd 17 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://webservices.nationalatlas.gov/wms?request=getCapabilities
http://www.it-ebooks.info/

18 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

For exposing all kinds of web mapping functionality over the web, ArcGIS for Server provides GIS
web services that can be used to create web GIS applications. This is the pattern to opt for when
you’re building web GIS applications. In other words, you fi rst publish a GIS resource (e.g., an
ArcMap map document) as a service and then build your web application, which consumes that
service. In addition, GIS web services provided by ArcGIS for Server can be used by major web
application development platforms and technologies such as JavaScript, .NET, Java, Microsoft
SharePoint, Microsoft Silverlight/WPF, and Adobe Flex (generally Esri calls these APIs ArcGIS Web
Mapping APIs).

There are also SDKs for using geospatial data on handheld devices that provide access to the device’s
hardware and services (like GPS). Esri provides SDKs for all major platforms of handheld devices
such as Google Android, Apple iOS, and Microsoft Windows Phone. These SDKs can provide access
to GIS web services that are published by ArcGIS for Server and other GIS web services that adhere
to OGC standards (just like WMS).

Mobile GIS

Mobile or handheld GIS is simply GIS software that runs on handheld devices such as smartphones
and tablet PCs. Mobile GIS software can work in connected and disconnected modes. This
capability makes them the best choice for a full range of fi eld-related activities like fi eld data
collection and validation. With the rapid progress of the hardware industry, wireless networks, and
the popularity of handheld devices, mobile GIS software might become the dominant category of
GIS software in the near future. ArcPad is the main mobile GIS of the ArcGIS platform. There is
also ArcGIS for Smartphones and Tablets as well. These products provide many useful tools for
navigation, querying, and analyzing geospatial data on a handheld device, and they can edit existing
geospatial data.

Table 1-1 organizes the ArcGIS platform based on the main GIS software categories.

TABLE 1-1: The ArcGIS Platform Based on the Main Categories of GIS Software

CATEGORY ARCGIS SOFTWARE

Desktop GIS: Professional ArcCatalog and ArcMap

Desktop GIS: Viewer ArcReader and ArcGIS Explorer

Desktop GIS: Virtual Globe ArcGlobe, ArcScene, and ArcGIS Explorer

Server GIS: Geospatial data access ArcSDE

Server GIS: Web GIS ArcGIS Server and ArcIMS

Server GIS: GIS Web Services ArcGIS Server

Developer GIS: Web GIS application

development

Web APIs for ArcGIS Server (JavaScript, Flex, Silverlight/ WPF,

Microsoft SharePoint, .NET, and Java)

Developer GIS: for customizing

Desktop GIS

ArcObjects SDK for .NET and Java and ArcGIS Explorer SDK

c01.indd 18c01.indd 18 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Models and Storage ❘ 19

Developer GIS: for Desktop GIS

development

ArcGIS Engine

Developer GIS: for mobile device

development

SDK for Android, iOS, and Windows Phone

Mobile GIS ArcPad, ArcGIS for Smartphones and Tablets

GEOSPATIAL DATA MODELS AND STORAGE

The term model can get quite confusing, given its use in a number of different contexts. The term
geospatial data model refers to how geospatial data are described and stored in the fi le or database
and how data are represented in a computer system. Raster and vector data models are two of the
most used methods of representing geospatial data on computers with many different storage models
and formats. Note that geospatial data consist of both attribute and geometry elements. Positional
data and all their related characteristics (such as coordinate system and accuracy) constitute the
geometry element of geospatial data.

NOTE Other kinds of models are available for geospatial data. A conceptual

model describes the elements of signifi cance for a specifi c purpose (domains
or applications like water management), including attribute characteristics
and relationships between attributes. The logical model represents business
 requirements with defi nitions and examples that prioritize importance and
how elements relate to each other. The physical model describes how the
logical model is represented in fi les or a database with corresponding sets of
constraints.

Raster

In a raster model, space is usually divided into a 2D array of cells (picture elements, or pixels for
short) and each cell is assigned a value. When geospatial data are represented in a raster model, all
detail about variation of the data within each cell is lost, and instead, the cell is given a single value.
That single value is almost always determined by the value that occupies most of the area of the cell.
Additional values stored for each cell may be a discrete value, such as a land use code, a continuous
value, such as pollution or elevation, or a null value if no data are available.

Two commonly used sources of raster data are satellite images and digital aerial photos. Raster
data is stored in various formats, from a standard fi le-based structure of PNG, TIFF, JPEG,
JPEG2000, and GeoTIFF to binary large object (BLOB) data stored directly in a relational database
management system (RDBMS). In the ArcGIS platform, there are many fi le formats you can work
with where raster data is concerned, and they can be stored outside the geodatabase model. But
as you will see in the “Esri Geodatabase” section later in this chapter, a geodatabase provides a
mechanism to store raster data beside other elements of a GIS system, such as vector data, toolboxes
for processing geospatial data, and many more. For a complete list of supported raster formats,
consult the ArcGIS Help.

c01.indd 19c01.indd 19 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

20 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

Vector

In a vector model, a point is the basic structure with which all the other geometries can be created.
Line and area features historically have been constructed using simple linear connections (straight
connections) between their point collections. As a result, line and area objects in GIS are modeled
as a collection of connecting line objects (called segments) and the terms polyline and polygon have
been coined to describe this fact. Vector models represent more precise and effi cient models for
storing and representing geospatial data, but the analysis of this model can be more complicated
than for raster models in terms of algorithms and computation resources needed. As with raster
data, there are quite a lot of formats and structures for storing vector data. The following sections
briefl y explain the most widely used structures for storing geospatial data.

NOTE Technically speaking, in GIS the connecting line between two points is
called a segment. Traditionally, segments were stored just as straight lines. But
in most modern GIS systems like ArcGIS, segments can be parametric curves as
well as straight lines (such as circular arcs, elliptical arcs, and Bézier curves). So
the line or area feature in GIS is composed of an ordered set of points (a point
collection) and the types of segments used between each pair of points in the
point collection.

Geospatial Data as Text or Binary File

Geospatial data can be stored simply in text fi les using comma-separated values (CSV) or similar
structures. In fact, almost all GIS packages provide some import/export functionality based on
simple text or spreadsheet fi les. In most cases, these structures provide the bare bones of geospatial
data and are used only for point geospatial data.

Early GIS systems used a proprietary structure or fi le format for storing and processing geospatial
data natively. Being proprietary, many early GIS systems didn’t publish their own proprietary
fi le format specifi cations. When there was a need to share geospatial data, they provided a
textual format with limited capabilities compared to the native proprietary format, or a different
proprietary format that had a published specifi cation.

As an example of such proprietary formats, Autodesk’s DXF (data exchange format) is a
proprietary fi le format intended to provide data interoperability between the Autodesk AutoCAD
platform and other software for vector data. Data in DXF can be saved as binary as well as
ASCII encodings, which makes it a low-cost choice for import/export functionality for
geometry elements of geospatial data. But limited support of spatial reference systems,
attributes, and complex geometries makes it a less useful fi le format for storing and processing
geospatial data.

Esri GRID is a raster fi le format that supports two distinct fi le formats. ARC/INFO GRID
is a proprietary binary raster format for native storage and analysis of raster data in Esri
products. ARC/INFO ASCII GRID is a textual format primarily used for exchange of
raster data.

c01.indd 20c01.indd 20 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Models and Storage ❘ 21

Geospatial Data in Georelational Models

The georelational model is one of the most widely used models for storage, processing, and sharing
geospatial data. In this model, geospatial data is divided into two separate but related structures.
The geometrical element of features is stored in a binary fi le or set of binary fi les, and corresponding
attributes are stored in a RDBMS table. Association between the geometry elements and attribute
elements is available using keys (unique keys in each set of features or feature class or identities). In
other words, there is a one-to-one relationship between geometries in binary fi le(s) and the records
of attribute data in the table.

The Esri shapefi le (shapefi le for short) is the most widely used georelational format for storing and
sharing geospatial data. A shapefi le actually consists of at least three fi les with the same name
and with different extensions. These three fi les store core data of the georelational model, and
other optional fi les can be used to provide further properties and metadata of the geospatial data
in shapefi le format. Mandatory fi les in shapefi le are:

 ➤ .shp: geometry element of geospatial features

 ➤ .dbf: attribute element of geospatial features; a dBase (a RDBMS) native format

 ➤ .shx: geometry index of geospatial features to enable quick geospatial data retrieval

Each shapefi le represents a single feature class of points, lines, or polygons. Over time, shapefi le has
become widely accepted as a de facto standard for storing geospatial data, and it is still widely used
and deployed. Despite its popularity, the shapefi le has serious limitations:

 ➤ Limited support for Unicode for fi eld name and attribute values

 ➤ Restricted length of fi eld name (10 characters)

 ➤ No support for topology

 ➤ Limited feature storage (2 gigabytes)

 ➤ Limited number of fi elds (255)

 ➤ No support for time data

 ➤ Rounding errors (because numeric attributes are stored in character format rather than in
binary format)

Geospatial Data inside Spatial DBMS

With the increasing use of geospatial data, the previous models for storing, processing, and sharing
geospatial data were rarely effi cient. A spatial DBMS is simply a DBMS in which geospatial data
can be stored and retrieved. In some cases, DBMS supports geospatial data natively. In the world of
commercial DBMS products, Microsoft has commenced support of geospatial data in all editions
of its fl agship DBMS product from version 2008 onward, so Microsoft SQL Server 2008 and 2012
(even the free Express editions) support geospatial data natively. In some other cases, spatial DBMS
is a database extension to a full-featured DBMS. A famous example of an open source database

c01.indd 21c01.indd 21 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

22 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

extension is PostGIS, which adds support for geospatial data to the PostgreSQL DBMS. Both SQL
Server of the latest versions and PostgreSQL/PostGIS are examples of native spatial DBMS.

In yet other cases, geospatial data access — which is a package of components and services — enables
use of geospatial data in RDBMS products. In this case, it doesn’t matter whether those relational
DBMS products are able to handle geospatial data natively; all that matters is that geospatial data
access software uses them as a repository of geospatial data. In this case, the geospatial data access
component, in conjunction with DBMS, comprises the spatial DBMS (a spatially enabled DBMS).
The old SQL Server 2000 plus ArcSDE is an example of a spatially enabled DBMS.

In this book, when I refer to the term spatial DBMS, I mean native spatial DBMS as well as
spatially enabled DBMS. As you have seen earlier, spatial DBMS is an indispensible part of server
GIS. The spatial DBMS provides a central solution to store the geometry and attribute elements
of geospatial data in seamless fashion. In addition, it provides the necessary tools to store vector
and raster data effi ciently. When one or more of the following conditions exist, resorting to spatial
DBMS is inevitable:

 ➤ Simultaneous users: In corporate environments, when geospatial data is of interest to more
than one group of users or departments, the DBMS should be used to handle geospatial data
sharing effi ciently and without any data duplication. Also, tracking users’ activities, saving
the lineage of geospatial data, and ensuring geospatial data consistency are much simpler
using a central solution like a DBMS.

 ➤ The need for long transactions: When long transactions are needed, there must be a fl exible
and effi cient mechanism to handle them. Long transactions are common in enterprise
workfl ows; they occur when simultaneous users edit the same geospatial dataset. In this
situation, each user must see his or her own changes with respect to shared geospatial data
without directly changing the shared geospatial data (until it is approved).

 ➤ High volume of geospatial data: Most previous models have limitations in handling
geospatial data. For example, shapefi le and most fi le-based formats cannot handle geospatial
data when it reaches the 2GB limit. In addition, because geospatial processing is complex in
nature, the higher the size of geospatial data, the higher the risk of crashing the whole GIS
software system.

 ➤ Storing dynamic geospatial data or historical archiving of geospatial data: Today storing
and analyzing spatio-temporal data is a common practice in many sciences and businesses.
Besides the many advantages of managing dynamic and historical geospatial data in
databases, analyzing changes of spatial data over time reveals many facts and patterns (and
it can be used in geospatial data mining applications).

 ➤ Integration of GIS with other information systems: For obvious reasons, almost all
large information systems make use of DBMS. It is the exception to have GIS as the only
information system in any enterprise. With spatial DBMS, it is possible to use the same
data in different information systems.

c01.indd 22c01.indd 22 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Models and Storage ❘ 23

Today, many commercial and open source DBMS products can be called spatial DBMS. In fact,
in recent years, spatial capabilities have become trendy, must-have capabilities in the IT world. All
major players in DBMS software have made their main products spatial DBMS. As another example
of standardization, OGC and the International Organization for Standardization (ISO) provide
the Simple Features specifi cation, which extends the Structured Query Language (SQL) for spatial
types. In this regard, the good news for developers is that the familiar SQL statements can be used
to retrieve geospatial data. The other good news is that all major DBMSs implement the standard
Simple Features specifi cation.

Geospatial Data in XML Structures

Today, XML technologies play a major role in many aspects of computing, from designing
the user interface of an Android mobile application to defi ning the web service interface of a
component and from saving a Word document in Microsoft Offi ce to saving vector graphics in
Scalable Vector Graphics (SVG). It is fair to say that we all use one or more XML technologies
nearly every day. XML has become the de facto standard for data exchange, and it is the most
common tool for data transmission between all sorts of data processing systems. In this regard,
there are some dominant XML-based formats that are used for storing, modeling, and visualizing
geospatial data. The most important XML-based formats in the geospatial community are KML,
GML, and GeoRSS.

NOTE Simply put, XML technologies are all formats, languages, grammars,
tools, and so on describing, modeling, storing, manipulating, querying, transform-
ing, transmitting, and linking data in XML-based formats and structures. Because
there are quite a lot of elements in XML technologies, there are XML integrated
development environment (IDE) software products to help you work with them. If
you are interested in XML technologies and IDEs, www.w3schools.com provides
a good starting point.

Creating KML Files

KML is an XML-based fi le format designed to store and display geospatial data in Internet-
based maps such as Google Maps, and virtual earth applications such as Google Earth or NASA
World Wind. KML was originally developed by Keyhole, Inc., which Google acquired in 2004.
The huge number of Google Maps and Google Earth users makes KML one of the most widely
used interchange formats for exchanging, sharing, and viewing geospatial data. In fact, Google
submitted the KML 2.2 specifi cation to the OGC to ensure that KML remained an open standard.
This was very good news for us. It became an offi cial OGC standard in 2008. Geospatial features
are modeled as placemarks, descriptions, ground overlays, paths, and polygons in textual fi les with
extensions of .kml or .kmz (the zipped version of a .kml fi le).

c01.indd 23c01.indd 23 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.w3schools.com
http://www.it-ebooks.info/

24 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

 2. Expand the Conversion Tools toolbox, and then expand the
From KML toolset to see the KML To Layer tool, as shown
in Figure 1-13.

 3. Double-click the KML To Layer tool. This tool creates a fi le
geodatabase containing a feature class within a feature dataset.
As shown in Figure 1-14, you have to provide an input .kml
fi le, address, and the name of the output geodatabase. Since
.kml fi les contain styles as well as geospatial data, the path of
the fi le geodatabase will be the path of the layer fi le. Set the
input parameters and click the OK button.

The following code is the simplest example of a point described in KML. It can be viewed as
geospatial data that have a name and description as their attribute and a point as their geometry.
If you save the fi le with the .kml extension, you will be able to see the actual feature on the surface
of the terrain with any virtual globe application like Google Earth, NASA World Wind, or ArcGIS
Explorer. In the following Try It Out, you are going to see the placemark in ArcMap using the
KML To Layer tool. So open your favorite text editor, enter the following code into it, and save it as
KishIsland.kml.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <name>Kish Island</name>
 <Placemark>
 <name>Kish Island</name>
 <description>Kish island in Beautiful Persian Gulf</description>
 <Point>
 <coordinates>53.96575016905689,26.50243592677882,0</coordinates>
 </Point>
 </Placemark>
 </Document>
</kml>

TRY IT OUT Using KML in ArcMap

 1. Start ArcMap and make sure that your ArcToolbox window is displayed. If it is not, click the
button with the toolbox icon on ArcMap’s standard toolbar (see Figure 1-12).

FIGURE 1-12

FIGURE 1-13

c01.indd 24c01.indd 24 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.opengis.net/kml/2.2
http://www.it-ebooks.info/

Geospatial Data Models and Storage ❘ 25

 4. A layer that visualizes a point feature should
have been added to your map; if that isn’t the
case, click the Add Data button (refer to
Figure 1-6) and select the point feature class
inside the Placemarks feature dataset of the
output geodatabase, as shown in Figure 1-15.

 5. As you see in Figure 1-16, a point feature is
added to the map. To make your map more
meaningful, add the National Geographic
Basemap to the main window of ArcMap.
You can do this by clicking the drop-down list
button right beside the Add Data button and
selecting Add Basemap.

FIGURE 1-14

FIGURE 1-15

FIGURE 1-16

c01.indd 25c01.indd 25 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

26 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

How It Works

KML is a simple but powerful format for storing and sharing geospatial data in simple structures. In
contrast with most other formats of geospatial data, it contains instructions on how to draw geospatial
data in addition to the geospatial data itself. A Point Placemark is the only way to draw an icon and
label in the 3D Viewer of Google Earth. By default, the icon is the memorable yellow pushpin. In KML,
a <Placemark> can contain one or more geometry elements, such as a LineString and Polygon. But
only a <Placemark> with a Point can have an icon and label, as shown in Figure 1-17.

FIGURE 1-17

Retrieving Geospatial Data as GML

GML is the successful effort of OGC to provide an integrated means for storing, sharing, and
modeling all forms of geospatial data. Generally, GML can be used for two different purposes.
First, the GML standard provides basic structures and tools (similar to basic data types in all
programming languages through which we can create the full range of structures and classes) for
defi ning schema or data models of geospatial data (which is called a GML application schema).
Another purpose of GML is to store and share geospatial data. In this case, GML instances or GML
documents (which are geospatial data based on schema defi ned by a GML application schema) are
used as an interchange format for transactions over the Web. GML can model vector and raster data
as well as sensor data (spatio-temporal observations and measurements).

c01.indd 26c01.indd 26 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Models and Storage ❘ 27

GML is focused on the description of geospatial data, and there is no style information (such as
thickness or color) inside GML documents. As a result, GML, like most geospatial data formats,
relies on other languages and approaches like KML and SVG for graphical representation.

GML is also important for another reason. Web Feature Service (WFS), another standard
specifi cation from OGC, is a web service for retrieving geospatial data as GML. In contrast to
WMS, which provides images of geospatial data, WFS provides full access to geospatial data. WMS,
WFS, and GML can be used extensively in ArcGIS for Desktop applications like any other native
source of geospatial data. The only requirement for using GML data is to install and enable the
ArcGIS Data Interoperability extension. The following Try It Out reveals how to use a WFS service
to retrieve geospatial data as GML.

WARNING Make sure to install and enable the ArcGIS Data Interoperability
extension. Otherwise you can’t follow the next Try It Out. To enable the ArcGIS
Data Interoperability extension use the Extensions…item in the Customize menu.

TRY IT OUT Using WFS in ArcMap

 1 . In the Catalog window inside ArcMap, double-click the Add Interoperability Connection item, as
shown in Figure 1-18, to add a new connection.

 2. Click the Ellipsis button to open the FME Reader Gallery. Almost at the end of the list, select
WFS as shown in Figure 1-19 and click the OK button.

FIGURE 1-18 FIGURE 1-19

 3. In the Dataset textbox, enter the following URL: http://ogi.state.ok.us/geoserver/wfs?
VERSION=1.1.0&REQUEST=GetFeature&TYPENAME=okcounties. Click OK to see a new connection
beneath Add Data Interoperability Connections.

 4. Add another interoperability connection using the following URL: http://ogi.state.ok.us/
geoserver/wfs?VERSION=1.1.0&REQUEST=GetFeature&TYPENAME=firestations.

 5. Drag and drop both datasets from the Catalog window to the Table Of Contents window
(see Figure 1-20).

c01.indd 27c01.indd 27 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://ogi.state.ok.us/geoserver/wfs?VERSION=1.1.0&REQUEST=GetFeature&TYPENAME=okcounties
http://ogi.state.ok.us/geoserver/wfs?VERSION=1.1.0&REQUEST=GetFeature&TYPENAME=okcounties
http://ogi.state.ok.us/geoserver/wfs?VERSION=1.1.0&REQUEST=GetFeature&TYPENAME=firestations
http://ogi.state.ok.us/geoserver/wfs?VERSION=1.1.0&REQUEST=GetFeature&TYPENAME=firestations
http://www.it-ebooks.info/

28 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

How It Works

As mentioned previously, it is possible to use GML as a native source of geospatial data in ArcGIS after
installing and enabling the ArcGIS Data Interoperability extension. Rather than adding a GML dataset
directly, in this Try It Out, we used a WFS service to retrieve counties and fi re stations in Oklahoma.
You can simply open the attribute table of those layers. Unlike WMS, which provides only an image of
geospatial data, you can query geospatial data provided by WFS.

Using GeoRSS

GeoRSS is a relatively new specifi cation to provide locations as part of web feeds. The prominent
standard for web feeds is RSS, which stands for RDF Site Summary (often nicknamed Really Simple
Syndication). Web feeds are in most cases used for frequently changing data or headlines of news in
websites and are aggregated automatically using feed readers like Google Reader and Feed Demon.

FIGURE 1-20

RELATIONSHIP BETWEEN XSD, GML, AND KUNG FU PANDA

RDF, or Resource Description Framework, is a set of standards served as general
tools for describing and modeling web resources (every resource that can be served
on the web is called a web resource). GML was fi rst designed and implemented
based on RDF; subsequent versions of GML use core XML technologies (especially
XSD) to make development easier and more manageable.

At this time if somebody asks me, “What is XSD?” I remember when Po (the fat
panda in Kung Fu Panda II who was assigned as dragon warrior) asked his father,
“Where did I come from?” his father (who was, strangely, a goose) told him that
baby geese come from eggs (much like my explanation about where GML comes
from) and added, “Don’t ask me where the egg comes from” (like my lack of expla-
nation about XSD). If you’re serious about learning GML, I recommend you read
Geography Mark-Up Language: Foundation for the Geo-Web, by Ron Lake, David
Burggraf, Milan Trninic, and Laurie Rae (John Wiley & Sons, Inc., 2004). If you
want to read about XSD, I recommend XML Schema Essentials, by R. Allen Wyke
and Andrew Watt (John Wiley & Sons, Inc., 2002).

c01.indd 28c01.indd 28 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Models and Storage ❘ 29

GeoRSS location is attached to web feeds, a very effi cient and simple mechanism for building
distributed geo-enabled sensor networks or services for notifi cation and early warning with devices
like smartphones.

There are currently two encodings of GeoRSS: Simple and GML.

 ➤ GeoRSS-Simple is a very lightweight format that developers can easily add to their existing
feeds with little effort. It supports basic geometries (point, line, box, polygon, and circle).
Coordinates in this encoding should be based on the geographic coordinate system (latitude
and longitude).

 ➤ GeoRSS GML is a formal GML application schema, and supports a greater range of
features, particularly coordinate reference systems other than WGS-84 latitude/longitude
and topological relationships between features.

In ArcGIS GeoRSS, feeds with an .rss or .xml extension can be easily added to ArcMap using the
ArcGIS Data Interoperability extension. Because GeoRSS services provide feeds on frequently
changed data, in most cases we use the URL of the GeoRSS service instead of downloading the
feed fi le.

As an example of using GeoRSS, many organizations, such as NASA, USGS, and British
Geological Survey, provide GeoRSS feeds about earthquakes (see Figure 1-21). If you want to
see the latest worldwide earthquakes, add another data interoperability connection, set the
format to GeoRSS, and provide the following address as the dataset when establishing a new
interoperability connection in ArcMap: http://www.bgs.ac.uk/feeds/School
Seismology.xml.

FIGURE 1-21

c01.indd 29c01.indd 29 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.bgs.ac.uk/feeds/SchoolSeismology.xml
http://www.bgs.ac.uk/feeds/SchoolSeismology.xml
http://www.it-ebooks.info/

30 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

ESRI GEODATABASE

The Esri geodatabase is the native format for geospatial data in the ArcGIS platform. Throughout
this book, the term geodatabase always refers to the Esri geodatabase. In its basic form, the
geodatabase is a collection of geospatial data stored in an RDBMS or fi le system. Geospatial data
inside the geodatabase are called datasets. Many kinds of datasets can be managed in a geodatabase
(e.g., raster, vector, network, terrain, and so on).

Rather than being a container for geospatial data, the geodatabase provides a model for managing
all aspects of geospatial data in an integrated manner. All forms of geospatial data can be modeled in
the geodatabase. In addition to geospatial data, geospatial analysis toolboxes, relationships, specifi c
behavior, and rules and constraints (for geospatial data consistency) can be stored in the geodatabase.

In addition to modeling and storing geospatial data as you see in this book, the geodatabase model
provides straightforward and common sets of classes and interfaces for working with geospatial
data whether they are stored as geodatabases or not. So when you are working with geospatial data
through code, in most cases you won’t care about the physical storage of geospatial data.

These capabilities of a geodatabase (and many more which are included in the ArcGIS platform)
make the geodatabase a distinct storage model for geospatial data (or at least an advanced spatial
DBMS model).

There are three geodatabase types in ArcGIS 10 and 10.1, each of which provides core geodatabase
functionality but a distinct set of physical storage and additional functionality. They are personal,
fi le, and ArcSDE geodatabases. The following sections begin with the simplest type, the personal
database.

Personal Geodatabase

A personal geodatabase uses the Microsoft Access engine (which is called Microsoft Jet) to store
and manage core geodatabase functionality. Personal geodatabases are stored as .mdb fi les in the
Windows operating system (the only supported operating system). Being Microsoft Access database
fi les, personal geodatabases are limited to 2GB size. Generally speaking, personal geodatabases are
slower than fi le geodatabases or even shapefi les. Another limitation is that personal geodatabases
are not geared toward a workgroup environment. The number of users for a personal geodatabase is
limited to only one editor and a few readers.

The nice facet of personal geodatabases is that you can open them with Microsoft Access and
perform all sorts of operations (such as editing text values, making calculations, and linking
data to Microsoft Excel) with the tools provided by the familiar Microsoft Offi ce products or by
using SQL statements inside Microsoft Access.

File Geodatabase

File geodatabases are the preferred type of geodatabase for small workgroups. In addition to all the
functionality that a personal geodatabase can provide, fi le geodatabases provide more storage, high
performance, and a platform-independent solution to handle geospatial data without requiring the
use of an RDBMS. A fi le geodatabase is an encrypted fi le folder that contains different datasets as

c01.indd 30c01.indd 30 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Esri Geodatabase ❘ 31

separate child folders. The default size limit for a dataset inside a fi le geodatabase is 1TB, which can
be increased up to 256TB. Each fi le geodatabase can contain many datasets, so there can be huge
amounts of geospatial data managed by a fi le geodatabase.

File geodatabases outperform shapefi les in terms of performance, and at the same time require less
disk space. File geodatabases need about one-third of the feature geometry storage in comparison
with shapefi les and personal geodatabases. In addition to geospatial data, fi le geodatabases can be
compressed to enable users even faster read-only access as well as use less disk space.

As is true of a personal geodatabase, fi le geodatabases have limitations in multi-user environments.
For each dataset, it is possible to have one editor and a few readers. But unlike personal geodatabases,
fi le geodatabases can have more than one editor at the same time for the whole geodatabase (but they
have to edit different datasets). This means that fi le geodatabases are suitable for small workgroups.
In addition to small workgroups, fi le geodatabases can be used in enterprises with simple, predefi ned,
and non-overlapping workfl ows for editing geospatial data.

A useful feature of a fi le geodatabase is that Esri published a C++-based open API for working with
fi le geodatabases. Using this API, you can make use of fi le geodatabases to manage geospatial data
right from your .NET code; there is no need to have a license or ArcGIS software on your machine
to do that.

ArcSDE Geodatabase

Both personal and fi le geodatabases are freely available for all ArcGIS for Desktop applications at
ArcEditor and ArcInfo license levels. As mentioned in the previous sections, for truly multi-user
environments, neither the fi le geodatabase nor the personal geodatabase provides adequate tools
and mechanisms for handling complex workfl ows and simultaneous editors. This is where ArcSDE
comes into play. As mentioned earlier in this chapter, ArcSDE is Esri’s technology for managing
geospatial data in major DBMSs. Since ArcGIS 9.2, Esri stopped selling ArcSDE as a stand-alone
product and began bundling it with ArcGIS for Desktop and ArcGIS for Server products. Because
ArcGIS for Server has two levels of capacity (Workgroup and Enterprise), in general there are three
types of ArcSDE geodatabases (the fi rst two types can also be considered the same type with a
different number of users):

 ➤ ArcSDE for SQL Server Express without ArcGIS for Server: ArcGIS for Desktop
applications (basic and advanced levels formerly known as ArcEditor and ArcInfo
respectively) are shipped with Microsoft SQL Server Express, which is the lightweight
and free edition of Microsoft SQL Server DBMS software. Through the use of ArcGIS for
Desktop applications, it is possible to create and manage this kind of geodatabase easily.
Up to three simultaneous users (ArcGIS for Desktop application users) can use this kind of
geodatabase. This type of ArcSDE geodatabase is well suited for low-cost deployment of a
GIS system along with other kinds of information systems.

 ➤ ArcSDE for SQL Server Express with ArcGIS for Server Workgroup: ArcGIS for Server
Workgroup edition is needed for this kind of ArcSDE geodatabase. Similar to the preceding
ArcSDE geodatabase, it requires Microsoft SQL Server Express, which only runs on a single
machine. But unlike the preceding ArcSDE geodatabase, it is not free, and a workgroup
level license of ArcGIS for Server has to be purchased. Up to 10 simultaneous users of

c01.indd 31c01.indd 31 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

32 ❘ CHAPTER 1 WHY GEOSPATIAL IS SPECIAL

ArcGIS for Desktop application users plus any number of web clients can use this kind of
geodatabase. This type of ArcSDE is best fi tted for deploying web GIS applications.

 ➤ ArcSDE with ArcGIS for Server Enterprise level: As the name suggests, this kind of
geodatabase provides the complete features of a geodatabase without limits on the number
of simultaneous and concurrent users or the size of the geodatabase, and it handles complex
workfl ows. It can work with fi ve major DBMS products: Microsoft SQL Server, Oracle,
IBM DB2 Informix, and PostgreSQL. This type of geodatabase can be installed on more
than one server machine.

A powerful feature of an ArcSDE geodatabase is that it supports standards such as OGC’s Simple
Features specifi cations and ISO’s spatial types standard. The good news for developers is that
because ArcSDE geodatabases make use of one (or more, in some situations) of our favorite DBMS
products, we can use our knowledge of that DBMS product and SQL language to manage ArcSDE
geodatabases.

SUMMARY

This chapter provided a brief overview of geospatial data and the reasons they are special. Then
it explained the ArcGIS platform based on the main categories of GIS software. In addition to the
ArcGIS platform, some major standard GIS services and formats such as WMS, WFS, KML, GML,
and GeoRSS were described in brief. At the end of this chapter, three types of Esri geodatabases
were explained. Chapter 2 deals with various approaches for customizing ArcGIS for Desktop
applications.

EXERCISES

 1. What is the diff erence between WMS and WFS?

 2. Which of the following formats provides the fastest performance: personal geodatabase, fi le

geodatabase, or shapefi le?

 3. What are the main categories of desktop GIS software?

You will fi nd the answers to these exercises in this book’s appendix.

c01.indd 32c01.indd 32 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 33

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Geotechnologies Collection of sciences and technologies for collecting, managing, analyzing, and

visualizing geospatial data. Geotechnologies include sciences and technologies

such as GIS, Remote Sensing (RS), Cartography, Photogrammetry, GPS, and

Surveying.

Types of GIS

software

Server GIS, Desktop GIS, Developer GIS, and Mobile GIS

Types of

geodatabases

Personal geodatabase, File geodatabase, and ArcSDE geodatabase

OGC WMS A standard GIS web service for retrieving an image of geospatial data

over the Web

OGC WFS A standard GIS web service for retrieving geospatial data as GML over the Web

KML An XML-based fi le format for storing and displaying geospatial data in

web-based applications such as Google Maps and virtual earth applications such

as ArcGIS Explorer and Google Earth. Since 2008, it has been managed by OGC.

GML An XML-based language for storing, sharing, and modeling all forms of

geospatial data in an interoperable fashion. GML can play two roles:

1. As modeling language to defi ne a data model of geospatial data for a specifi c

application domain (schema of geospatial data for specifi c purpose)

2. As fi le format for storing and sharing geospatial data

GeoRSS An XML-based format for associating positional information with web feeds.

There are two encodings for GeoRSS: simple and GML.

c01.indd 33c01.indd 33 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c01.indd 34c01.indd 34 25/02/13 4:10 PM25/02/13 4:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to ArcGIS
for Desktop Applications
Customization

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The diff erent ways to customize ArcGIS for Desktop applications

 ➤ How to create an add-in for ArcGIS Desktop

 ➤ How to build custom components for ArcGIS Desktop

 ➤ How to use Python in ArcGIS Desktop

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter02 folder and
is individually named according to the names throughout the chapter.

Esri has been providing customization in almost all its products since its inception in the
1970s. In some cases, Esri developed specifi c scripting languages and programming interfaces
(API) for its own products in order to allow users to customize their use of the products.

The ArcGIS platform is a complete system for performing all sorts of geospatial-related activities.
Also this platform is fl exible enough to provide almost all its functionality to GIS professionals
and developers as development kits for customization and extension. In other words, there are lots
of opportunities for customizing the ArcGIS platform. The “Developer GIS” section of Chapter
1 mentions some of the opportunities that exist for developing an ArcGIS-based solution for all
major computing platforms such as desktop, web, and mobile. Since the focus of this book is on
ArcGIS for Desktop applications, in this chapter you are going to look at different opportunities
for customizing and developing upon ArcGIS for Desktop applications.

2

c02.indd 35c02.indd 35 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

36 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

vFOUR WAYS TO CUSTOMIZE ARCGIS FOR DESKTOP

When the fi rst version of ArcGIS released in late 1999, Esri changed its strategy from using its own
specifi c scripting languages to standard programming languages. Since then, GIS professionals
and developers have happily customized and developed their own customization in familiar and
well-known programming languages such as Visual Basic. Until version 10.0 of ArcGIS, desktop
applications shipped with an embedded programming language called Microsoft Visual Basic for
Applications (VBA). In addition to ArcGIS, VBA is embedded in many other software products,
such as the Microsoft Offi ce package. Microsoft decided to stop supporting VBA or offering a VBA
distribution license. As a result, version 10.0 of ArcGIS is the last version in which VBA can be used
for development.

NOTE In ArcGIS 10.0 and 10.1 there is no ArcObjects VBA SDK. For backward
compatibility with previous developments in VBA, Esri off ers an optional
 separate setup that needs an additional license.

That was very bad news for the ArcGIS community.

Most ArcGIS users learned customizing ArcGIS for Desktop applications through VBA. But there
is good news as well; Python is the preferred scripting language in versions 10.0 and 10.1. To be
specifi c, Python was in the ArcGIS platform for many years. But Python recently gained major
growth in terms of capabilities and user communities. It is open source, and many open source
projects use this programming language to develop and implement geospatial-related concepts
and techniques. Python will be supported in the next versions of ArcGIS and is the best choice for
writing geoprocessing scripts in ArcGIS for Desktop applications.

NOTE As mentioned in the previous note, VBA is not supported in versions 10.0
and 10.1 natively. But you can use map documents (.mxd fi les) containing VBA
code after enabling the use of VBA in ArcMap. In order to enable use of
VBA in ArcGIS 10.0 or 10.1, you have to follow these steps:

1. Install ArcGIS Desktop VBA Resources for Developers.

2. Get an authorization fi le for VBA from Esri.

ArcGIS for Desktop applications are the fl agship professional GIS products for performing all
geospatial-related activities. There are quite a lot of opportunities for customization in almost
every aspect of ArcGIS for Desktop. ArcGIS for Desktop applications 10.0 and 10.1 have four
options for customization and development, listed below and sorted from least to
most complex.

 ➤ User Interface (UI) customization

 ➤ Scripting

c02.indd 36c02.indd 36 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the User Interface ❘ 37

 ➤ Desktop add-ins

 ➤ Developing custom components using ArcObjects SDK (Extending ArcObjects)

In the upcoming sections, you look at each method to understand when and how to use each
approach.

CUSTOMIZING THE USER INTERFACE

The user interface (UI) of a software product is where users of the system interact with an
application in order to perform their intended activities. Software developers should provide users
with all the required toolbars, tools, and commands. Also, users appreciate having all needed
toolbars and tools in tidy and easy-to-reach locations in the main window of software products. It
is an excellent idea to provide UI customization options to avoid crowding the main window of the
software when there are lots of toolbars, tools, and commands that can be used. Users want the
fl exibility to arrange UI components based on their personal preferences. This is why all software
producers provide some sort of customization capabilities in their own products.

NOTE Microsoft Word provides lots of tools to work with. Even advanced users
of Microsoft Word may not be completely aware of what can be done with this
masterpiece word processor software. When I want to let audiences know that
there are lots of things they can do with UI customization, I often ask them,
“How can you do a simple calculation in Microsoft Word?” Don’t think about
Microsoft Excel or even Calculator; surprisingly, it can be done inside Word.
All you need to do is to add the Calculate button to the main window of
Microsoft Word!

Sometimes, with a little UI customization you can give users all that they need without a single line
of code. Four applications of ArcGIS for Desktop (ArcMap, ArcCatalog, ArcGlobe, and ArcScene)
are shipped with dozens of built-in toolbars, tools, and commands. In this case, you can save all
the UI customization in a document (such as an ArcMap map document [.mxd fi le]) and put this
document in a public folder in a shared network place where all users have access. Next, you see
how to customize the UI and what you can do with this kind of customization. In the following Try
it Out, you create a new toolbar and populate it with some handy tools.

TRY IT OUT Adding a New Toolbar and Menu to ArcMap

 1. Run ArcMap.

 2. Point to the Customize menu and select Customize Mode, as shown in Figure 2-1. Also note that
you can open the Customize Mode window by double-clicking the empty gray area in ArcMap
where all the toolbars are located.

c02.indd 37c02.indd 37 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

38 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 5. Check the checkbox in front of the new Useful Analysis toolbar to display it. Click on the
Commands tab and wait for the lists of Categories and Commands to be populated (see
Figure 2-4). Several commands can be used in ArcMap. Most of them are provided as tools and
commands on the toolbars. Some other commands are provided as tools in ArcToolbox. There
are also commands and tools that you can’t see on toolbars or in ArcToolbox. You can put
all commands on your newly added toolbar as well as on all existing toolbars that come with
ArcMap by default.

 3. From the Customize window, click on the New button (as shown in Figure 2-2) to create a new
toolbar.

 4. The New Toolbar window pops up. As shown in Figure 2-3, enter Useful Analysis as the toolbar
name and then click on OK. The Useful Analysis toolbar should be added to the end of the
toolbars list in the Customize window. You can switch it on or off by checking or unchecking
the checkbox in front of the name of the toolbar. As the name suggests, you use this toolbar for
placing frequently used geoprocessing tools such as Buffer, Overlay, Clip, and Spatial Join.

FIGURE 2-1

FIGURE 2-2 FIGURE 2-3

c02.indd 38c02.indd 38 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing the User Interface ❘ 39

 7. Select the Buffer tool from the Commands list and drag
and drop it onto your newly created toolbar. Notice that
while dragging the Buffer tool, the mouse cursor is a
small “x” indicating that the cursor’s current position
is not a valid place to drop the tool. When the mouse
cursor is over a valid command container (such as any
toolbar or menu), the small “x” changes to a small “+”
indicating that you can drop the tool or command to add
it. After you drop the Buffer tool on the newly created
toolbar, you see a small hammer icon on the toolbar.
You are going to change its image. So right-click on the
image of the newly added Buffer tool to see its context
menu, shown in Figure 2-6.

 8. In the context menu, select the Name option and enter any helpful text such
as Buffer the Features in the Name textbox, as shown in Figure 2-7. Then
select an appropriate image from available images or select the Browse for
Image option to select an image on your local drive. The image should be in
.png or .bmp format and usually 16 × 16 pixels. In addition, select Image and
Text as the display option. As you will see, the title of the toolbar is displayed
together with the tool’s image.

 9. At this point, you have a new toolbar with only one tool. Add the Intersect,
Clip, and Spatial Join tools from the Analysis Tools category to the toolbar.
Change their images and set a helpful name for them (see Figure 2-8). Right-click on the Intersect
tool, and from the context menu select the Begin a Group option to add a vertical bar (separator)
between the Buffer and Intersect tools.

FIGURE 2-4 FIGURE 2-5

 6. As shown in Figure 2-5, scroll down the Categories list to fi nd Analysis Tools. These are the same
tools that you can fi nd in the Analysis Tools toolbox inside the ArcToolbox window.

FIGURE 2-6

FIGURE 2-7

c02.indd 39c02.indd 39 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

40 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 12. Save the map document using the Save command in the File menu. Name the map document
CustomToolbar.mxd. If you close ArcMap and then open it, you will notice that the UI
customization you just completed (the Useful Analysis toolbar) is missing. But if you open the
Custom Toolbar map document (CustomToolbar.mxd), you will fi nd the Useful Analysis toolbar.

How It Works

The Customize window is the central controller of any
UI customization in ArcMap. When you see and use the
Customize window, you are in Customize mode. You can
change the look and feel of the standard UI of the ArcGIS for
Desktop applications by changing the images, names, and
display options of existing tools and commands. You can also
create new toolbars and menus and add existing tools and
commands to them. By default, all the newly added toolbars
and menus are saved only in the current map document. But
you can change this behavior by using the Options tab. If you
uncheck Create New Toolbars and Menus in the document
checkbox, your newly added toolbars and menus will be avail-
able whenever you open ArcMap (see Figure 2-11).

 10. There are some other useful geoprocessing tools that are
less frequently used than Buffer or Overlay that you
are going to add as menu items. Scroll down the
Categories list to fi nd the New Menu item, as shown in
Figure 2-9. When New Menu is selected in the Categories
list, there is always a New Menu item in the Commands
list. Just drag and drop the New Menu command in the
Commands list to the Useful Analysis toolbar.

 11. Rename New Menu to Other Analysis, select the Begin
a Group option, and then add the Multiple Ring Buffer,
Identity, and Erase tools from the Analysis Tools category
to the menu in the same way that you added Buffer to the
Useful Analysis toolbar. Close the Customize window.
The toolbar should now look like Figure 2-10.

FIGURE 2-8

FIGURE 2-9

FIGURE 2-10

FIGURE 2-11

c02.indd 40c02.indd 40 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting ❘ 41

Because you can share your customization with other people by sharing the map document that
includes customization, in most cases the default behavior of ArcMap (to save newly added toolbars
and menus in a specifi c document) makes perfect sense. Also you can lock your customization in
order to avoid others tampering with what you have customized in the ArcMap environment.

You have to be in Customize mode in order to remove commands or tools from any built-in or
newly created toolbar. All you have to do is drag and drop any tools or commands to somewhere in
the main window of ArcMap where there is no other toolbar or menu.

NOTE When you change anything in the UI of ArcGIS for Desktop applications, by
default all the changes (except newly added toolbars and menus) are saved in a
special template fi le (such as the Normal.mxt fi le in the case of ArcMap). Examples
of these changes are switching on or off any built-in toolbars of ArcMap, dock-
ing a catalog window, and adding or removing any tools or commands to built-in
toolbars or menus. This special template, which is generally called the application
confi guration template, is read each time the application is started. All the newly
added toolbars and menus are saved in the current document by default. You
can fi nd all the application confi guration fi les in your profi le folder in the Windows
installation drive. For example, if you use ArcGIS 10.0 or 10.1 on Microsoft Windows,
your application confi guration templates are in the following folders:

➤ Windows XP:

<Windows Installation Drive>:\Documents and Settings\<Your user

name>\Application Data\ESRI\Desktop10.x\

➤ Windows Vista or 7:

<Windows Installation Drive>:\Users\<Your user name>\App Data\

Roaming\ESRI\Desktop10.x\

Remember that ArcCatalog doesn’t use map documents, so all the custom-
izations are always saved in the Normal.gxt fi le (the ArcCatalog application
 confi guration fi le).

NOTE In addition to existing toolbars and menus, context menus can be custom-
ized easily. (A context menu is the menu displayed when you right-click some-
where in the software product.) Based on where the right-click event happened,
or more precisely what object is right-clicked, diff erent context menus should be
displayed. I don’t discuss customization of context menus in this book.

SCRIPTING

Knowledge of scripting is vital for ArcGIS professionals interested in promoting their automation
and analysis skills. Python is used as the scripting language in the ArcGIS platform. Python is
an open source, cross-platform, and general-purpose programming language that can be used

c02.indd 41c02.indd 41 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

42 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

As you can see in Figure 2-13, the Python window is a two-part window. The upper part of the
Python window is used for coding and the other part provides help as you type the code.

in many applications, ranging from fi nancial to pure scientifi c applications. Python is a modular
programming language. In most cases, you can use (import) many modules for your applications
free of charge. It is a very high level programming language and easy to learn. In contrast to its
simplicity, Python is a very powerful programming language.

Inside ArcGIS, Python allows users and developers to create tools and scripts ranging from single
functions to complex multifunction workfl ows which can be easily reused, shared, and executed.
In ArcGIS 10.0 and 10.1, the Python scripting language is the primary scripting language and
nearly completely replaces the unsupported VBA. So what can you do with Python? The simple
answer is you can do many things with Python in ArcGIS for Desktop.

You can use Python to populate fi eld values based on simple calculations in Field Calculator when
working with attribute tables in ArcMap. This capability was fi rst added to ArcGIS 10.0. Another
welcome addition to all ArcGIS for Desktop applications is a new Python window. Previous versions
of ArcGIS had the Command window.) In the next Try It Out, you learn about some opportunities
for using the Python window.

TRY IT OUT Using the Python Window to Execute Simple Select by Attribute

 1. Start ArcMap and add states, cities, and intrstat feature classes from the TemplateData.gdb
geodatabase fi le that is shipped with ArcGIS. If you install ArcGIS using its default settings, you
can fi nd the geodatabase fi le in the <ArcGIS installation folder>\ArcGIS\Desktop10.0\
TemplateData for ArcGIS 10.0 or <ArcGIS installation folder>\ArcGIS\Desktop10.1\
TemplateData for ArcGIS 10.1 folders. You need these feature classes in order to perform your
scripting.

 2. Click on the Python window button (shown in Figure 2-12) to display the Python window.

FIGURE 2-12

c02.indd 42c02.indd 42 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting ❘ 43

 3. Type arcpy into the upper (code) window. Be careful of the case of your text because Python
is a case-sensitive programming language. Notice that as you type the text an autocomplete
list is shown. The autocomplete list provides suggestions that you can select from based on
what you have typed, and as you type further it fi lters the list of suggestions.

Like almost all other object-oriented programming languages, Python uses a period or dot (.) to
provide access to members of a parent object or module. So a huge list of functions, modules, and
classes appears as you type a dot after arcpy.

 4. Continue your statement with select and you will see a list of
six autocomplete suggestions, all of which start with the text
you entered, as shown in Figure 2-14. Using the arrow keys on
your keyboard, pick SelectLayerByAttribute_management
from the list, then press the tab or Enter key to insert the
selected item in the code window. At this point, your Python
window should contain the following line of code:

arcpy.SelectLayerByAttribute_management

 5. Continue your coding by entering an opening parenthesis character, “(”. As shown in
Figure 2-15, another list is displayed that suggests input layers for the SelectLayer
ByAttribute analysis tool. As you can see in Figure 2-15, the help window provides (1) general
syntax, and (2) a short description. You will also fi nd detailed information about each input
and output for the specifi ed analysis. Use the arrow keys to select the last layer in the list: U.S.
States (Generalized). Then press the tab or Enter key. You have now provided the fi rst input.

FIGURE 2-13

FIGURE 2-15

FIGURE 2-14

c02.indd 43c02.indd 43 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

44 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 7. The last argument is a where_clause, which is a conditional statement for selecting a subset of
data. The syntax for this argument has to be based on Structured Query Language (SQL). Enter
the following text for this argument. Remember that you have to be careful about case sensitivity
and quotes. Then enter a closing parenthesis to fi nish your fi rst Python scripting.

"STATE_NAME = 'California'"

Your Python window should resemble Figure 2-17.

 6. For providing the second input, selection_type, you have to enter the comma character (,).
Look at the syntax of the analysis, which requires this character for separating arguments. You
can see that a list of available types for selection displays, as shown in Figure 2-16. Select
NEW_SELECTION from the list and enter a comma character.

FIGURE 2-16

FIGURE 2-17

 8. Press Enter to run the code. You will notice that a progress bar in ArcMap indicates that the tool
is running. After fi nishing the whole process, a beautiful blue message box pops up and tells you
the task is fi nished successfully. You will notice that the California state feature is selected
on the map.

How It Works

Python was used for executing the Select Layer By Attribute geoprocessing tool, which you can fi nd in
ArcToolbox. In fact, this Try It Out was a simple geoprocessing task composed of a single function.
So inside ArcGIS, Python is really a scripting language to execute geoprocessing tasks. You likely have
noticed that arcpy is a gateway to all Python functions, tools, and classes that can be used in ArcGIS.
When you use the Python window, execution is done in background mode. This means that when you
execute the tool you can do other things, like interact with a map, print a map document, or even per-
form another geoprocessing task. This is a new feature introduced in ArcGIS 10.0.

c02.indd 44c02.indd 44 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting ❘ 45

Geoprocessing in ArcGIS is performed through the ArcPy site package (or ArcPy for short). In
Python terminology, a site package is a library or module that extends the Python programming
language. All geoprocessing tools can be accessed through ArcPy. In addition, ArcPy provides
several functions, classes, and modules that provide extended functionality as well as simple coding.
More access to geospatial data is provided with ArcPy in comparison with previous scripting
experience, known as ArcGIS scripting, in previous versions of ArcGIS. As an example, ArcPy
provides access to map documents and layers using a mapping module. For example, you can use
Python scripting and mapping modules to remove all layers of a Data Frame. You see this in action
in the following Try It Out.

TRY IT OUT Removing All Layers of a Data Frame Using Python

 (RemoveAllLayerPY.zip)

 1. Add some layers to your map. Click the Python window button to display the Python window.
You are going to use the mapping module of ArcPy.

 2. Enter the following script to access the current map document (the map document in which you
are coding), then press Enter to execute the code.

mxd = arcpy.mapping.MapDocument('Current')

 3. Type the next line of code to get the fi rst Data Frame inside the current map document.

df = arcpy.mapping.ListDataFrames(mxd)[0]

 4. Enter the following line of code to get a list of all layers inside the current map document.

lyrs = arcpy.mapping.ListLayers(mxd)

 5. You want Python to remove a layer from the fi rst Data Frame of the current map document and
iterate through all layers in that Data Frame one by one. So you have to resort to a for statement.
Enter the following line of code. Note that you have to provide a colon (:) after the for statement,
then press Enter.

for lyr in lyrs :

 6. In Python, you have to indent all lines of code that are intended to be considered as execution
code inside a for block. So press the Tab key and then enter the following line of code, then press
the Enter key to execute the script.

arcpy.mapping.RemoveLayer(df, lyr)

If you type everything correctly (remember Python is case sensitive), all layers of your map should
be removed.

 7. You can save this script by right-clicking the code window and selecting Save As.

c02.indd 45c02.indd 45 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

46 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

How It Works

ArcPy and Python are a powerful couple that are able to perform geoprocessing tasks inside
ArcGIS. ArcPy is not all about geoprocessing. As mentioned previously, in addition to geoprocessing
it provides special classes, functions, and modules to enhance and extend the capabilities of Python to
work with geospatial data. You have seen a mapping module in this Try It Out. The arcpy.mapping
module is a library of functions and classes that allows you to automate mapping tasks such as opening
and manipulating map documents and layer fi les. There are also other modules inside ArcPy, such as
the Spatial Analyst module (arcpy.sa), that can perform powerful spatial analysis operations like map
algebra and image classifi cation, to name a couple.

In addition to running a single geoprocessing analysis, you can perform a sequence of geoprocessing
tasks using ArcPy and Python. Suppose that you have many feature classes and want all of them to
be clipped to a certain extent. You can do this easily using ArcPy. In the next Try It Out, you clip all
feature classes inside the USA feature dataset inside the TemplateData.gdb fi le geodatabase to the
extent of New York State.

TRY IT OUT Clip All Feature Classes in a Feature Dataset (ClipNewYorkPY.zip)

 1. Start ArcMap and add the states feature class from TemplateData.gdb (see the “Using the
Python Window to Execute Simple Select by Attribute” Try It Out earlier in this chapter for how
to fi nd TemplateData.gdb).

 2. As a best practice, you are going to make a copy of the whole TemplateData.gdb fi le geodatabase
and work with that copy. So enter the following line of code, and then press Enter on your
keyboard to execute the code. Please pay attention to the backward slashes as you enter the path
and name of the copy of the geodatabase.

arcpy.Copy_management("C:\Program Files\ArcGIS\Desktop10.1\TemplateData\
 TemplateData.gdb","C:\ClippedGDB.gdb")

 3. You are going to use the newly created geodatabase in your code. So it is good idea to set it as
your default workspace. You can do this using the following code snippet:

arcpy.env.workspace="c:\ClippedGDB.gdb"

 4. Select New York State and create a new feature class for it using the code below:

arcpy.Select_analysis("states", "NewYork", "STATE_NAME = 'New York'")

 5. Now you want to get all feature classes inside the USA feature dataset. So you have to use one of
the special functions provided by ArcPy. Use the ListFeatureClasses function to create a list of
all (* wildcard) feature classes of all geometry types (All) in the USA feature dataset:

fcs= arcpy.ListFeatureClasses("*", "All", "USA")

c02.indd 46c02.indd 46 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting ❘ 47

 6. As the fi nal step, you need to clip all feature classes in the list by the New York feature class.
Remember to include the colon (:) after the for statement and to add the indentation before the
second line of code as shown here:

for fc in fcs:
 arcpy.Clip_analysis(fc,"NewYork", fc + "ClippedByNewYork")

 7. If everything goes correctly, you will see all clipped feature classes added to your map.

How It Works

In this Try It Out, you fi rst made a copy of the TemplateData.gdb fi le geodatabase. Then you used
the Select_analysis function to extract the feature class needed as a clip feature class. Finally you
clipped all feature classes inside a feature dataset by the clip feature class. All the results from the
Python window are added to the map. This way, you create a simple geoprocessing workfl ow inside
ArcMap. You could do the same task outside of ArcMap using any Python editor, such as IDLE, which
comes with ArcGIS. All you need to do is import the ArcPy module.

As you have seen, it takes little effort to write a
script containing several geoprocessing tools to
create a simple workfl ow. In addition, because
the workfl ow is performed in the background
you can work with other tasks at the same
time. More importantly, you automatically and
without setting anything manually perform
the workfl ow. This is why using Python is far
superior to working with ModelBuilder or
executing tools in ArcToolbox in batch mode.
Also you can use the Results window (shown in
Figure 2-18 and available from the geoprocessing
menu in ArcMap or ArcCatalog) to watch the
progress of the workfl ow and much useful
information about each individual geoprocessing
operation. You see the ModelBuilder and Results
windows in action in Chapter 12.

As you have seen in this section, you can run
a single tool or sequence of tools to create
geoprocessing workfl ows. But the real strength and power of using Python and ArcPy is not limited
to that. You can execute long and advanced workfl ows. With Python, you can create and execute
scripts without any ArcMap session. This means that there is no need to open or run ArcMap to
execute scripts, and scripts can be executed at certain points in time based on defi ned schedules. You
also can make your scripts more generic to be shared with other users as script tools that can be run
like any other geoprocessing tool.

FIGURE 2-18

c02.indd 47c02.indd 47 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

48 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

Version 10.1 added even more capabilities to Python. Creating desktop add-ins, faster cursors, and
Python geoprocessing tools are just a few of them. Further discussion about Python is outside the
scope of this book. You can fi nd thousands of samples and code snippets of using Python in the
ArcGIS Desktop Help and online ArcGIS Resource Center, especially in the ArcGIS Geoprocessing
Resource Center.

DESKTOP ADD-INS

ArcGIS Desktop Add-Ins is the newest way to customize and extend ArcGIS for Desktop
applications. For many years, using Microsoft Visual Basic 6.0 or Microsoft .NET platform to
create custom components was the only way to develop and customize ArcGIS Desktop applications.
Add-ins provide some advantages when compared with other methods of developing and extending
ArcGIS for Desktop applications. In particular, they provide a tidier model for development that
focuses on business logic. In comparison, when you are developing or extending the ArcGIS
for Desktop applications using the alternative approach, you have to provide many details for
components. Components used to build the ArcGIS platform are called ArcObjects. ArcObjects
are at the heart of the ArcGIS platform. All the ArcObjects can be accessed by using add-ins.
This means that everything that a user can do through the user interface can be done through
code. Another advantage of desktop add-ins (or add-ins for short) is that they provide an easier
deployment model, which makes them a perfect choice for sharing functionality. Sharing add-ins is
performed by simply copying and pasting add-in fi les. So what exactly is an add-in fi le?

An add-in fi le with an extension of .esriaddin is a zipped folder containing an XML metadata fi le,
assembly fi le(s), and resources. The XML metadata fi le or config.esriaddin holds the static and
descriptive data about an add-in, such as the captions of buttons. Programming aspects of an add-in
are specifi ed in compiled .NET assemblies (.dll fi les). All the required resources for an add-in are in
the resources folder. You will see this structure in the next Try It Out.

How can you install an add-in fi le? Add-in fi les are automatically discovered in well-known local
folders and plugged into the desktop applications at runtime. What qualifi es as a local well-
known folder depends on your operating system, and can be one of the following paths:

 ➤ Windows 7 and Vista: <Windows Installation Drive>:\Users\<your user name>\My
Documents\ArcGIS\AddIns\Desktop10.0 or Desktop 10.1

 ➤ Windows XP: <Windows Installation Drive>:\Document and Settings\<your user
name>\My Documents\ArcGIS\AddIns\Desktop10.0 or Desktop10.1

In addition to a local well-known folder, you can introduce any shared folder in a network as a
shared well-known folder. By doing this, the add-in shared well-known folder can be used by anyone
who has access to that folder through the network.

One nice feature of add-ins is that there is no need to make a setup or installation package for them.
When you want to share your add-in, all you need to do is copy it to media like a USB fl ash disk,
e-mail it, or even upload it to a website. In order to install an add-in, all you need is to double-
click the add-in fi le. Esri provides an installation utility associated with add-in fi les (fi les with the
.esriaddin extension) that copies the add-in fi le into the well-known folder. You can also copy and
paste the add-in fi le to a local well-known folder manually to install it.

c02.indd 48c02.indd 48 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Desktop Add-Ins ❘ 49

So far you have learned that add-ins are useful, but you might be wondering how you can create
add-ins.

In version 10.0 of ArcGIS, add-ins can be created using VB.NET, C#, or Java. In version 10.1, in
addition to those languages, you can use Python to create add-ins.

NOTE Because this book focuses on developing and extending ArcGIS for
Desktop applications using .NET, from this point, you won’t see anything unre-
lated to the .NET platform. In addition, all code examples in this book are based
on C#. If you are a VB.NET programmer, it is easy to understand what C# code
does. In fact, VB.NET and C# have similar syntax and capabilities, and in most
cases, the diff erence between similar pieces of code in those two languages is a
single semi colon.

In order to create add-ins, you need at least .NET 3.5 sp1 (service pack 1), which is installed with
ArcGIS Desktop 10.0 and 10.1. Secondly, you need an Integrated Development Environment (IDE) to
be able to write code. You can use any IDE from Microsoft that supports .NET 3.5 sp1. The following
is a list of available IDEs that can be used to develop add-ins for ArcGIS Desktop 10.0 and 10.1.

 ➤ Supported IDEs for version 10.0:

 ➤ All editions of Visual Studio 2008 including Express

 ➤ All editions of Visual Studio 2010 except Express

 ➤ Supported IDEs for version 10.1:

 ➤ All editions of Visual Studio 2010 including Express

You need to install the ArcObjects SDK for Microsoft .NET framework. You can fi nd the
ArcObjects SDK for Microsoft .NET on the same media from which you installed ArcGIS for
Desktop. When you install the ArcObjects SDK, it adds useful templates, wizards, and utilities to
Visual Studio. To summarize, you have to install the appropriate IDE, and then ArcObjects SDK,
for .NET to be able to execute the code in this book. In the next Try It Out, the journey begins!

TRY IT OUT Creating the Simplest Add-In (FirstAddIn.zip)

 1. Start your IDE. In this book I use the Visual Studio 2010 Ultimate and Professional editions,
which may be slightly different from your IDE. You are going to create a new project, so click on
the New Project link on the Start Page or select New Project from the File menu.

 2. Expand the ArcGIS node under Visual C# in the Installed Templates section. You should see
three child nodes. Select Desktop Add-Ins to display four different templates for four desktop
applications. If you don’t see the ArcGIS node under Visual C# or Visual Basic, you have to install
the ArcObjects SDK. If you have installed the software, but the four templates shown on
Figure 2-19 are still not available, you might have to select .NET Framework 3.5 as your
platform. Select the ArcMap Add-in, provide a name for your project and solution, and specify
where the project should be saved. Then click the OK button.

c02.indd 49c02.indd 49 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://VB.NET
http://VB.NET
http://VB.NET
http://www.it-ebooks.info/

50 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 3. The ArcGIS Add-Ins Wizard will be displayed. Provide some information on name, author,
publisher, and a short description for your add-in in the Welcome section of the wizard. Name
it FirstAddIn, then click on Add-in Types to see a list of available items that can be created as
add-ins. Select Button and enter the information shown in Figure 2-20. (In particular, be sure to
enter ShowTime as the Class Name. I refer to this fi le in the next steps.) Then click Finish.

FIGURE 2-19

FIGURE 2-20

c02.indd 50c02.indd 50 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Desktop Add-Ins ❘ 51

 4. After a few seconds, Visual Studio creates the necessary fi les. If you open the Config
.esriaddinx fi le, you will notice that everything that you have provided resides in this
confi guration fi le. You can change them whenever necessary. There is a class fi le with the name
of ShowTime.cs. You are going to add functionality for your button in this fi le. Double-click the
class fi le in Solution Explorer. Several skeleton pieces of code are written by the wizard. Find
the OnClick() method in the middle of the fi le, then delete the comments (lines of code that
start with //). Type the following lines of code in the ShowTime class body:

ArcMap.Application.Caption = DateTime.Now.ToLongTimeString();

Your whole code should be similar to the following:

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
namespace FirstAddIn
{
 public class ShowTime : ESRI.ArcGIS.Desktop.AddIns.Button
 {
 public ShowTime()
 {
 }
 protected override void OnClick()
 {
 ArcMap.Application.Caption = DateTime.Now.ToLongTimeString();
 }
 protected override void OnUpdate()
 {
 Enabled = ArcMap.Application != null;
 }
 }
}

 5. Run the code by pressing F5 or click the
Start Debugging button (

▲

). Because you
have the ArcMap Add-in template, Visual
Studio starts an ArcMap session for
testing and debugging the written code.
In ArcMap, select the Add-In Manager
from the Customize menu to see a list of
installed add-ins. Select the add-in you
have created (FirstAddIn). You will see
that there is only one button in this
add-in, which shows current time
(see Figure 2-21). Click on the Customize
button.

FIGURE 2-21

c02.indd 51c02.indd 51 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

52 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 6. The familiar Customize window appears, as
shown in Figure 2-22. Your fi rst add-in is in the
ArcGISBook Commands category because you
entered ArcGISBook in the Category textbox in
the Welcome section of the Add-In Wizard in Visual
Studio when creating the add-in from the template).
If you are not sure about the category of your
add-in, open the confi guration fi le and fi nd the
category attribute. Place the Shows Current Time
button wherever you want, such as on the Tools
toolbar. After dragging and dropping the button on
an appropriate place, close the Customize window
by pressing the Close button.

 7. Test the functionality of the button by hovering
the mouse on the button to see if the tooltip works
correctly. Finally, click the button to change the title
of the ArcMap map document from “Untitled” to the current time.

How It Works

You start creating add-ins by choosing an add-in template based on the desktop application where you
want to use the add-in. All the templates and wizards are integrated into Visual Studio, so you can
easily and quickly provide the necessary information. This simple add-in just changed the title of an
ArcMap map document. Surprisingly, there is no tool or option to change the whole title of an ArcMap
map document through the user interface of it (you can change the title of the ArcMap map document
by saving it, but some text, such as ArcMap-ArcInfo, will remain. Using this add-in you can change the
whole title of the ArcMap map document). So this simple Try It Out reveals that add-ins can do many
things that cannot be done with the user interface.

Add-ins are managed using the Add-In Manager window. You can delete an add-in by using
the Add-In Manager or simply delete the add-in fi le from the well-known folder. When you delete
an add-in using the Add-In Manager, the add-in goes to the Recycle Bin of your operating system
so you can restore it if you deleted it accidentally. You need to use the Customize window to
use add-ins. The add-ins framework can be used to create different kinds of controls, windows,
extensions, and toolbars, to name a few. Next you see how to create a toolbar using an add-in. In
the following Try It Out, you will fi rst create a button to remove all layers of the active Data Frame
and then put your two buttons on a toolbar.

TRY IT OUT Creating a Toolbar Using an Add-In (FirstAddIn.zip)

 1. If you are in debug mode from the previous Try It Out, close ArcMap or click on Stop Debugging
(■) inside Visual Studio. (You can also use the Stop Debugging command from the Debug menu in
Visual Studio.) Select the FirstAddIn project.

FIGURE 2-22

c02.indd 52c02.indd 52 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Desktop Add-Ins ❘ 53

In Visual Studio terminology, a solution can contain one or more projects and a project can
contain multiple fi les and folders. Because your solution just contains one project, you can fi nd
the FirstAddIn project beneath the solution and the project displayed as a parent node for all
the other fi les and folders. Right-click on the FirstAddIn project and choose New Item from the
context menu. From the Installed Templates list, choose Visual C# Items ➪ ArcGIS ➪ Desktop
Add-Ins and select Add-in Component. Name it RemoveAllLayers. Note that if you don’t see the
Solution Explorer in Visual Studio, you can turn it on using the View menu.

 2. In the ArcGIS Add-Ins Wizard, select Button as your add-in type and set its properties to match
those shown in Figure 2-23. Then click the Finish button.

FIGURE 2-23

 3. Because you are going to work with maps and
layers, you have to add an appropriate reference
to your project. You can think of a reference as a
call to a particular software library. In Solution
Explorer, right-click the References folder and
choose Add ArcGIS Reference from the context
menu. Under Desktop ArcMap, select ESRI
.ArcGIS.Carto and click the Add button, then
click Finish (see Figure 2-24).

 4. Double-click the RemoveLayers.cs fi le in the
Solution Explorer and add the following lines of
code at the very fi rst line of the code window:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;

FIGURE 2-24

c02.indd 53c02.indd 53 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

54 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 5. Change your OnClick() method to be similar to the following code listing:

protected override void OnClick()
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 map.ClearLayers();
 IActiveView activeView = map as IActiveView;
 activeView.Refresh();
 mxdoc.UpdateContents();
 }

 6. The second add-in button is ready. You can test it by pressing the Start Debugging button (F5)
and use the Customize window to put it on a toolbar inside ArcMap. Add a couple of map layers
to ArcMap from the TemplateData.gdb geodatabase like you did in the previous Try It Outs in
this chapter. Click the newly added add-in button in ArcMap to test if all the layers in your map
document will be removed. After that, you can click the Stop Debugging button in Visual Studio.
Next, you are going to add a toolbar to your add-in. Right-click the project inside the Solution
Explorer and select Add New Item from the Add menu. Then select in the Installed Templates
section by selecting Visual C# Items ➪ ArcGIS ➪ Desktop Add-Ins.

Adding a toolbar is slightly different in versions 10.0 and 10.1.

 ➤ For version 10.0, choose Add-in Component, name it FirstToolbar, and then click the Add button.
The ArcGIS Add-Ins Wizard pops up. Click the Add-in Command Bars link and from the list of
available Command Bars select the Toolbar item.

 ➤ For version 10.1, choose Add-in Command Container, name it FirstToolbar, and then click the
Add button. The ArcGIS Add-Ins Wizard pops up. From the list of available Command Bars,
select the Toolbar item.

 7 In the Items grid, you can add both of your add-in buttons (the add-in for showing the current
time and the add-in for removing all map layers). Set the property of the toolbar to match
Figure 2-25 and click Finish.

FIGURE 2-25

c02.indd 54c02.indd 54 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ArcObjects SDK ❘ 55

 8. Press F5 (Start Debugging) to see the toolbar with two buttons. This time there is no need to
resort to the Customize window since the toolbar will be already available to use.

How It Works

In this Try It Out, you fi rst create another more useful button and provide functionality to remove all
layers from the active Data Frame (FocusMap in terms of ArcObjects) in ArcMap. If you don’t under-
stand the code, don’t worry. Throughout this book, you will learn the necessary skills to create add-ins.
add-in framework toolbars are added declaratively. This means that unlike buttons, they don’t have an
associated class fi le. In fact, because toolbars don’t contain any logic (like responding to the OnClick()
event), in the add-ins framework you work with toolbars through the config.esriaddinx fi le. If you
look at the confi guration fi le, you will easily fi nd the toolbar.

Add-ins provide a simple, declarative model for development for ArcGIS Desktop. But this simplicity
has its expense. You explore more about add-ins in upcoming chapters. For now just consider that
all the ArcObjects and therefore all the capabilities of the ArcGIS platform can be accessed using
the add-in framework, and in order to create an add-in you need to be familiar with one .NET
programming language (VB.NET or C#).

 ARCOBJECTS SDK

Developing ArcGIS for Desktop applications using ArcObjects SDK (or ArcObjects API) has
been available for more than 10 years. All the ArcObjects can be accessed through this method
of development (just like add-ins). By using ArcObjects SDK, you have more fl exibility than with
the add-ins model, but the cost of fl exibility is complexity. A comparison of these two models of
development shows that most of what you can do with ArcObjects SDK is exposed to the add-ins
model (such as creating buttons, toolbars, dockable windows, and context menus).
Add-ins provide a declarative model for confi guration, and there is no need to build an
installation or setup package. Just copy and paste your add-in fi le and you will have the add-in
in your ArcGIS for Desktop applications. In contrast, when you use the ArcObjects SDK you
have to be imperative. This simply means that you have to write code for all aspects of your
customization, such as putting buttons on a toolbar. In order to publish anything created with
the ArcObjects SDK, you have to build an installation or setup package. To install any type of
software, you need operating system administrator privileges. These are some of the advantages
and disadvantages of development for ArcGIS for Desktop applications using add-ins and
ArcObjects SDK. The good news is that the code for both methods of development is similar
and often is identical. Just remember that add-ins provide an easier, tidier, and more high-
level model for creating new functionalities. But this fact doesn’t mean that you don’t need to
be familiar with .NET and ArcObjects for creating add-ins. Quite the opposite: You have to be
familiar with .NET and ArcObjects to be productive enough to implement your ideas in either
model of development (add-ins or ArcObjects SDK models). Now try the ArcObjects SDK to
create a button for zooming into the full extent of an active layer. (An active layer is the selected
layer in the Table of Contents inside an ArcMap application.)

c02.indd 55c02.indd 55 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://VB.NET
http://www.it-ebooks.info/

56 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

TRY IT OUT Using the ArcObjects SDK (UsingAOSDK.zip)

 1. Create a new project in Visual Studio and, as shown in Figure 2-26, select the Extending
ArcObjects category in the Installed Templates section under the ArcGIS node. Then select the
Class Library (ArcMap) template. You have to select .NET Framework 3.5 as the development
platform. Provide a meaningful name for the project and solution, and set an appropriate location
for saving your fi rst ArcObjects SDK project fi les. Click OK.

FIGURE 2-26

 2. The ArcGIS Project Wizard displays in which
you have to provide references for your project.
Note that adding references can be done later
using the Add ArcGIS Reference command
from the context menu of the References
folder. For this Try It Out just add two
references for ESRI.ArcGIS.ArcMapUI and
ESRI.ArcGIS.Carto (you can fi nd them under
the Desktop ArcMap list as shown in
Figure 2-27). After adding the references
click Finish.

 3. You don’t need the class1.cs fi le, so delete
it (right-click the fi le in the Solution Explorer
and choose Delete). Then right-click on the project and select Add New Item from the Add menu.
From the list of available items, select the Base Command template from the Installed Templates
section under Visual C# Items ➪ ArcGIS ➪ Extending ArcObjects (see Figure 2-28). Name it
ZoomToActiveLayer and click the Add button. As you can read in the right part of the Add New
Item window, Base Command is used when you want to create a button (or more precisely a
command) in ArcGIS for Desktop applications.

FIGURE 2-27

c02.indd 56c02.indd 56 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ArcObjects SDK ❘ 57

 4. You have to determine the type of command. You are
going to create a command to be used in ArcMap, so
select Desktop ArcMap Command as shown in
Figure 2-29 and click OK.

 5. After a few seconds, multiple lines of code appear in
Visual Studio, which has nothing to do with the code
that you have seen for the add-in in the previous Try It
Out. But don’t fret. Most of the code is for component
registration. You are going to use a nice feature that you
can use inside Visual Studio called code snippets, or
snippets for short. Code snippets are blocks of reusable
pieces of code which can be easily incorporated into
your code. Point your cursor outside of any method and
right-click. (You can simply right-click before two “}”
at the end of the class fi le.) Select ArcGIS Snippet Finder
from the context menu. As the name suggests, ArcGIS Snippet Finder is used to fi nd and insert
ready-to-use code snippets for ArcGIS development inside Visual Studio. Type Active Layer in
the keyword textbox as shown in Figure 2-30, and then click the Search button. One snippet
appears in the upper pane and when you select it, the entire code for that snippet will be shown
in the lower textbox. Then click the Insert Code button. If your cursor was inside any method, a
warning pops up. In that case, change your cursor position and try again.

FIGURE 2-28

FIGURE 2-29

c02.indd 57c02.indd 57 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

58 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 6. The ZoomToActiveLayerInTOC method is added to your code. With a little attention, you notice
the intention and required argument for this method. Find the OnClick() method, which is
executed when your command is clicked in runtime. Inside the OnClick() method, enter the
following two lines of code.

 Public override void OnClick()
 {
 IMxDocument mxdoc = m_application.Document as IMxDocument;
 ZoomToActiveLayerInTOC(mxdoc);
 }

 7. You are almost fi nished. You just have to provide some information about the command itself. So
fi nd the ZoomToActiveLayer() method and change all the code shown in bold.

Public ZoomToActiveLayer()
 {
 base.m_category = "ArcGISBook";
 base.m_caption = "Zooms To Active Layer";
 base.m_message = "Zooms To Active Layer inside TOC";
 base.m_toolTip = "Zooms To Active Layer inside TOC";
 base.m_name = "ZoomToActiveLayer";

 try
 {
 string bitmapResourceName = GetType().Name + ".bmp";
 base.m_bitmap = new Bitmap(GetType(), bitmapResourceName);
 }

FIGURE 2-30

c02.indd 58c02.indd 58 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 59

 catch (Exception ex)
 {
 System.Diagnostics.Trace.WriteLine(ex.Message, "Invalid Bitmap");
 }
 }

 8. That is it. Press F5 to test your fi rst ArcObjects SDK development. When you press F5, Visual
Studio runs ArcMap. In ArcMap, fi nd the ArcGISBook Command category inside the Customize
window on the Commands tab. You will see your command. Put it wherever appropriate and
close the Customize window. Add some layers to ArcMap, then select one of them inside the Table
of Contents window and test your command. Hope you enjoy it.

How It Works

In this Try It Out, you used the ArcGIS Snippet Finder to insert a reusable block of code. Snippets make
life far easier for developers. Most of the time, snippets provide a great starting point. But in order to
get the most out of snippets, you have to be familiar with fi nding appropriate classes and interfaces and
reading Object Model Diagrams of ArcObjects. Throughout this book, you will become familiar with
most of them.

SUMMARY

In this chapter, you have explored all the models for customizing and developing ArcGIS for
Desktop 10.0 and 10.1 applications. Through add-ins or by extending ArcObjects, the ultimate
in customization and development in ArcGIS for Desktop applications can be done using .NET.
In both models, you need to write .NET code in VB.NET or C# to make use of ArcObjects. Also,
ArcGIS code snippets are available for both models; like any other ready-to-use piece of software,
they just provide a good starting point but in almost all cases you need to write your own business
logic. Also, ArcGIS code snippets are very good for learning ArcObjects programming. So as you
step into the specifi c topic of ArcObjects programming, feel free to explore ArcGIS snippets. In the
next two chapters, you are going to learn the basic and necessary parts of .NET programming to be
able to put ArcObjects to work.

EXERCISES

 1. What is the best way for creating and executing geoprocessing workfl ows?

 2. Which model of development provides declarative confi guration?

 3. Which model of development of ArcGIS for Desktop applications provides more fl exibility?

 4. Which models of development of ArcGIS for Desktop applications don’t need operating system

administrator privileges?

You will fi nd the answers to these exercises in this book’s appendix.

c02.indd 59c02.indd 59 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

60 ❘ CHAPTER 2 INTRODUCTION TO ARCGIS FOR DESKTOP APPLICATIONS CUSTOMIZATION

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Programming languages used

for ArcGIS development

C#.NET, VB.NET, Java, and Python

ArcPy module arcpy is a gateway to all Python functions, tools, and classes that

can be used in ArcGIS.

Python geoprocessing in ArcGIS is performed through an ArcPy

site package (or ArcPy for short). All geoprocessing tools can

be accessed through ArcPy. In addition, ArcPy provides several

functions, classes, and modules that provide us with extended

functionality as well as simple coding patterns.

Models of ArcGIS

customization

1. User Interface (UI) customization

2. Scripting

3. Desktop add-ins

4. Developing custom components using ArcObjects SDK

(Extending ArcObjects)

Tools required for ArcGIS

Desktop development

1. Visual Studio (support for .NET 3.5 is necessary)

2. ArcObjects SDK for Microsoft .NET

VBA support in current and

next versions of ArcGIS

Until version 10.0 of ArcGIS, desktop applications shipped with an

embedded programming language called Microsoft Visual Basic for

Applications (VBA). Microsoft decided to stop supporting VBA or

off ering a VBA distribution license; as a result, by default VBA is not

directly installed with ArcGIS for Desktop applications.

c02.indd 60c02.indd 60 25/02/13 4:13 PM25/02/13 4:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

.NET Programming Fundamentals

 � CHAPTER 3: .NET Programming Fundamentals, Part I

 � CHAPTER 4: .NET Programming Fundamentals, Part II

c03.indd 61c03.indd 61 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

c03.indd 62c03.indd 62 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

.NET Programming
Fundamentals, Part I

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Microsoft .NET framework and its relationship to C#

 ➤ General features of C# programming language

 ➤ Major data types in C# and corresponding data types in .NET

 ➤ Object-based manipulation

 ➤ Introduction to object-oriented programming in C#

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter03 folder and
is individually named according to the names throughout the chapter.

This chapter presents an overview of programming in the offi cial language of .NET: C#. You
learn about the fundamental aspects of this programming language. Topics such as data types,
operators, loops, and conditional statements are explained. This chapter assumes you are
familiar with these concepts and only teaches how to implement them in C#.

THE .NET FRAMEWORK

The .NET Framework is a collection of fundamental technologies designed to provide the
common services needed to run applications. Microsoft designed the .NET Framework with
certain goals in mind, such as support of industry standards, extensibility, unifi ed program-
ming model, improved memory management, and so forth. Following is a brief explanation of
.NET Framework technologies.

3

c03.indd 63c03.indd 63 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

64 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

 ➤ .NET programming languages: Include C#.NET (or C# for short), VB.NET (or VB
for short), F#, and managed C++. The main programming languages inside the .NET
Framework are C# and VB. C# and VB are similar in terms of syntax as well as perfor-
mance of code execution. Though the syntax is a bit different, both use the .NET class
library and are supported by the Common Language Runtime (CLR). Microsoft recently
has stated that it will now aim to ensure that VB and C# contain the same functionality.
According to Microsoft, choosing to program in C# or VB is just a lifestyle choice. If you
are a hard-core fan of VB don’t worry. All code samples in this book are in both C# and
VB. Dozens of other languages are ported into the .NET Framework, but the main lan-
guages are the mentioned ones. The unifi ed programming model provided by .NET enables
you to develop a class written in C#, which can extend the class written in VB.

 ➤ .NET Framework Base Class Libraries (BCL): The giant repository of classes that provide
prebuilt functionality for everything from reading a text fi le to drawing graphics and tex-
tures in an online game. The class library collects thousands of pieces of prebuilt function-
alities that you can use in your applications. Sometimes parts of BCL are organized into
a technology set such as ADO.NET (the technology for working with databases), ASP
.NET (technology for creating web applications), Windows Forms (technology for creating
 traditional Windows applications), and WPF (technology for creating modern Windows
applications), to name just a few.

 ➤ CLR (Common Language Runtime): The fundamental component of the .NET Framework
is the CLR. This is the engine that executes all .NET programs and provides an environ-
ment for managed execution of .NET applications. It manages the execution of .NET
applications by providing services such as memory management, security checking, and
code optimization. For this reason, .NET code which executes inside CLR is called man-
aged code. In short, the CLR provides a layer of abstraction between the code and operating
system.

 ➤ Visual Studio: This is not really part of the .NET Framework, but because Visual Studio is
always used in .NET development it is considered a part of the .NET platform. Originally
written in C#, Visual Studio provides one of the most complete and fully fl edged (if not the
best and most complete) integrated development environments, or IDEs, for development of
all kinds of software. Visual Studio contains a complete .NET Framework, so in order to
prepare your necessary tools for .NET development all you need is to install Visual Studio.

THE C# LANGUAGE

The offi cial language of the .NET Framework is C#. Learning C# is quite simple, and you get a lot
of help from Visual Studio’s coding tips and built-in IntelliSense (the code autocompletion feature of
Visual Studio). The following sections provide an overview of programming in C#.

A Brief History of C#

C# is a simple, modern, general-purpose, object-oriented programming (OOP) language. During
the development of the .NET Framework, the BCL were originally written using a managed code

c03.indd 64c03.indd 64 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 65

compiler system called Simple Managed C (SMC). Anders Hejlsberg (father of C#) formed a team to
build a new language at the time called C-like Object Oriented Language (COOL). Microsoft has
the habit of choosing sexy names for its products: ActiveX, XNA, Xbox, and so forth. For trade-
mark reasons and maybe because COOL is not cool and sexy enough, Microsoft changed the name
of the language to C#.

Basic Concepts

Like all the programming languages, C# has its own syntax. C# generally follows the syntax of the
C and C++ programming languages.

Case Sensitivity

C# is case sensitive. This means whenever you defi ne a variable, method, and so forth, you have to
refer to them using the exact name and case for them. In addition, you have to write all the key-
words of the language in lowercase. For example, if you want to declare an integer variable you have
to type int instead of all other variations, such as Int, INT, and iNT.

Comments

Comments are valuable descriptive text that are ignored during execution and enhance the read-
ability of the code for developers. In C#, you can comment out a single line of text using a double
forward slash (//). For multiline comments, you can insert a forward slash plus asterisk (/*) at the
beginning of the fi rst line and an asterisk plus a forward slash (*/) at the end of the last line. Using
multiline comments, you can comment out a block of code for test purposes. This way, you still have
that block of code in your source code, which is not considered by a compiler for execution.

//this is a single line comment
// feel free to write anything descriptive
//even in your mother tongue
/*this is a multiline comment
* always use comments to explain your code
* it makes it easier and faster
* to understand
* the code when it has some comments
*/

When you insert the */ in a multiline comment, note that all subsequent new lines automatically
get an asterisk. However, you can remove the asterisk at the beginning of lines between /* and */
because they are unnecessary.

/*this is a multiline comment
always use comments to explain your code
it makes it easier and faster
to understand
the code when it has some comments
*/

C# has some other options for commenting code. You look at one of them later in this chapter in the
“Methods” section.

c03.indd 65c03.indd 65 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

66 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

Block Structure

In C#, blocks of code are composed of code that is grouped together for execution in loops, con-
ditional execution, defi ning methods, and so forth. In all these cases (and more that you will see
throughout this book), blocks of code are defi ned using curly braces ({}).

The following is the syntax for a code block:

{
 // Code in a block
}

Statement Termination Character

The C# compiler recognizes a semicolon (;) to denote the end of an executable line of code. Every
statement in C# must end with a semicolon except when you are defi ning block structure and com-
ments. Remember that comments are not executable code; thus, they don’t need a semicolon. All the
code inside the block must have a semicolon (;); however, because the defi nition of a block requires
a curly bracket ({) at the beginning of the block and a curly bracket (}) at the end of the block, there
is no need for a semicolon (;) at the end of a block defi nition.

//block of code (Method definition)
void CalculatingSummationAndAverage()
{
 // executable code inside a block (method)
 int summation = 0;
 int count = 0;
 //block of code (for block)
 for (int iteratorVariable = 0; iteratorVariable < 10; iteratorVariable++)
 {
 //executable code inside a block
 summation = summation + iteratorVariable;
 count = count + 1;
 }
 //executable code inside block
 double average = summation / count;
}

Because the C# compiler considers one line of code as a statement with one semicolon (;), you can
break your code into multiple lines to enhance readability. The following two lines of code show
various ways to write the same statement. You can write either

summation = summation + iteratorVariable;

or

summation = summation +
 iteratorVariable;

Variables and Data Types

Like any modern programming language, C# uses variables to store all kinds of data: numbers, text,
and objects. A variable is a named location in memory. Using variables, your program can read or

c03.indd 66c03.indd 66 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 67

alter values stored in memory. Before you use a variable in your program, you must declare it. You
have to provide a name and data type for the variable when declaring the variable in C#. Generally
when you want to declare a variable you start with the data type followed by the name you want to
use as the name of the variable.

int summation;

Specifying the data type is referred to as strong typing. Strong typing results in more effi cient mem-
ory management, faster execution, and compiler type checking, all of which reduce runtime errors.

Once you declare a variable, you can assign it an initial value, either in a separate statement or
within the declaration statement itself. For instance, the following code

int counter = 1;

is equivalent to this

int counter;
counter = 1;

C# safeguards you from errors by restricting you from using uninitialized variables. For example,
the following code causes an error when you attempt to compile it:

int myNumber;
// myNumber is uninitialized
// The following line of code causes an error
myNumber = myNumber + 1;

So it is good idea to declare and initialize a variable in the same line of code. For this reason, always
assign default values for your code (for example, 0 for numeric variables). Once you’ve declared your
variables, you can freely assign values to them, as long as these values have the correct data type.

//declaring and initializing myNumber variable
int myNumber=0;
// since myNumber has a value it can be used freely
// The following line of code doesn't cause an error
myNumber = myNumber + 1;
//asssigning new value to your variable
myNumber = anotherVariable * 5;

All .NET programming languages make use of the same data types with somewhat different names.
For example, the Integer data type in VB is the same as int in C#. In spite of the different names,
the CLR considers those data types as two different names for the same .NET data type: System
.Int32. This feature provides unlimited opportunities for language integration. Because languages
share the same core data types, you can easily use and even extend objects written in one .NET
language in an application written in another .NET language. In the following sections, you learn
about the intrinsic data types in C# and .NET, which are numeric, character, and date.

Numeric Data Types

Numeric data types can be integral or fractional. Table 3-1 summarizes the most important integral
data types of C# and the equivalents in .NET.

c03.indd 67c03.indd 67 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

68 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

TABLE 3-1: Integral Data Types

C# DATA TYPE .NET DATA TYPE STORAGE SIZE VALUE RANGE

byte Byte 8 bit 0–255

short Int16 16 bit -32,768–32,767

int Int32 32 bit -2,147,483,648–2,147,483,647

long Int64 64 bit -9,223,272,036,854,775,808–

9,223,272,036,854,775,807

You have to use fractional data types when a variable should store numbers that include decimal
parts. Table 3-2 briefl y explains all fractional numeric data types available in .NET.

TABLE 3-2: Fractional Data Types

C# DATA

TYPE

.NET DATA

TYPE

STORAGE

SIZE VALUE RANGE

float Single 32 bit –3.4028235E+38 through –1.401298E–45 for negative

values;

1.401298E–45 through 3.4028235E+38 for positive

values

double Double 64 bit –1.79769313486231570E+308 through

–4.94065645841246544E–324 for negative values;

4.94065645841246544E–324 through

1.79769313486231570E+308 for positive values

decimal Decimal 128 bit 0 through +/–79,228,162,514,264,337,593,543,950,3

35 with no decimal point; 0 through +/–7.92281625142

64337593543950335 with 28 places to the right of the

decimal

The default data type for integral numbers is the int data type and for fractional numbers it is
 double. This means the C# compiler considers each integral number as an integer and each frac-
tional number as a double even if you declare a variable as another type and assign a number to that
variable. In the following code, 123.123 is a fractional number and as a result is considered as a
double to the C# compiler. If you try to assign 123.123 to a variable of type decimal or float, you
get a compiler error that tells you it cannot convert double to float or decimal implicitly.

//both of the following lines of code
//cause errors
decimal myDecimal = 123.123;
float myFloat = 123.123;

c03.indd 68c03.indd 68 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 69

For this reason, you have to append a special character to your numbers to explicitly tell the com-
piler that “I know you consider every fractional number a double, but I want you to consider this
number a fl oat and assign it to the myFloat variable.” These characters, which are called type indi-
cators, are as follows:

 ➤ M or m for decimal

 ➤ D or d for double

 ➤ F or f for fl oat

 ➤ L or l for long

Using this special character, you can rewrite your code as follows:

 //no errors
decimal myDecimal = 123.123d;
float myFloat = 123.123f;

NOTE Type indicators are one of the few features that aren’t case sensitive
in C#. The storage sizes along with the required range of values are the most
important parameters when choosing a data type for a variable. An obvious rea-
son for this fact is that the smaller the storage size, the faster the compiler can
work with that data type. However, there is an exception. The C# compiler per-
forms arithmetic operations with integers (the Int32 base .NET data type) faster
and more effi ciently than the other numeric data types such as byte or short.
For this reason, it’s better to use integers as counter variables even though a
byte or short type could easily manage the maximum range of values.

Fractional data types provide another point of consideration. The float and double data types
always have rounding errors, but in most cases those errors are negligible. For example, consider the
following code, which results in a really small number.

float floatPI = 3.14f;
double doublePI = 3.14d;
double result = floatPI - doublePI;
//the result will be a small number
//1.04904174680343E-07

The decimal data type holds a larger number of signifi cant digits than either the float or the dou-
ble data types, and it is not subject to rounding errors. The decimal data type is usually reserved
for fi nancial and scientifi c calculations that require a high degree of precision.

Other numeric data types also can be used in .NET, such as BigInteger and ulong (which are not
covered in this book). If you are interested in other numeric data types in .NET, consult the .NET
Framework documentation.

c03.indd 69c03.indd 69 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

70 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

Character Data Types

In this category, C# has char and string data types for holding single characters and strings of
characters, respectively. Both data types support Unicode, which means that you can easily represent
and work with every language from Persian to Mandarin Chinese. The char data type can store just
single unicode characters, such as “p” or “a,” and every char variable occupies 16 bits of memory.
Any string variable stores a sequence of unicode characters that can include zero to about two bil-
lion characters.

string firstName = "Pouria";
string lastName = "Amirian";
//string concatenation using + operator
string fullName = firstName + lastName;
//value of fullName is "PouriaAmirian"

C# treats any embedded backslash (\) as the start of a special escape character that specifi es how
the character should be printed in the output. Each escape character starts with “\” followed by a
specifi c token. The most useful character literals are as follows:

 ➤ \' for single quote

 ➤ \" for double quote

 ➤ \n for new line

 ➤ \t for horizontal tab

 ➤ \\ for backward slash

Note that specifying the actual backslash character (for example, in an address of a fi le) requires
two backslashes. Here’s an example:

// A string variable holding the
// D:\ESRI\ArcGIS\TemplateData.gdb
string path ="";
path = "D:\\ESRI\\ArcGIS\\TemplateData.gdb";

Alternatively, you can use a so-called verbatim string by prefi xing string literal with the @ symbol.

path = @" D:\ESRI\ArcGIS\TemplateData.gdb ";

Boolean Data Type

The boolean data type (bool in C#) holds a 16-bit value that is interpreted as true or false. It’s
used for variables that can be one of only two values, such as yes or no, on or off, or up or down
(for this reason, they are often called fl ag variables).

bool isActive = false;

Date Data Type

Dates are held as 64-bit integers. C# has no keyword for the date data type, but the .NET
Framework defi nes a few useful data types for working with date and time: the DateTime and
TimeSpan structures.

c03.indd 70c03.indd 70 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 71

Nullable Data Types

By default, no intrinsic data types (except string) can be assigned a null value. This can become
problematic when retrieving data from data structures such as a database that does allow nulls.
Since the release of .NET 2.0, it has been possible to create nullable data types. Simply put,
a nullable type can hold all the values of its underlying type, plus the value null. Thus, if you
declare a nullable boolean, it could be assigned true or false or null. When declaring a value
type variable that may be assigned a null, you make it a nullable type by placing a question mark
symbol (?) after the type name.

// compiler error
double employeeSalary = null;
//OK, no error
double? salary = null;

Operations on Variables

You can use all the standard types of variable operations in C#. When working with numbers, you
use various math symbols, as listed in Table 3-3. C# follows the conventional order of operations,
performing exponentiation fi rst, followed by multiplication and division, and then addition and sub-
traction. You can also control order by grouping sub-expressions with parentheses.

TABLE 3-3: Math Operators

OPERATOR MEANING

+ Addition

- Subtraction

* Multiplication

/ Division

% Reminder

If you divide one integer by another integer, the C# compiler performs integer division. That means
it automatically discards the fractional part of the answer and returns the whole part as an integer.
For example, if you divide 15 by 2, you end up with 7 instead of 7.5. The solution is to explicitly
indicate that one of your numbers has a fractional data type. For example, if you replace 15 with
15d, C# will treat the 15 as a double. Also you can reach the same result by replacing 15 with 15.0,
which C# will treat as a double. Either way, the division will return the expected value of 7.5.
Of course, this problem doesn’t occur very often in real-world code, because then you’re usually
dividing one variable by another. As long as your variables aren’t integers, it doesn’t matter what
number they contain.

C# also enables you to use the addition operator (+) to join two strings, which is referred to as string
concatenation.

c03.indd 71c03.indd 71 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

72 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

string firstName = "Anahid";
string lastName = "Basiri";
//string concatenation
string fullName = firstName + " " + lastName;
//value of fullName is "Anahid Basiri"

C# also provides special shorthand assignment operators. Here are a few examples:

// Add 15 to summation
// This is the same as summation = summation + 15;
summation += 15;

// Multiply mySalary by 3
// This is the same as mySalary = mySalary * 3;
mySalary *= 3;

For other math functions, you can use .NET’s Math class. The Math class provides many useful
functions for performing arithmetic and trigonometric calculations. The methods in this class are
static, which means they are always available and ready to use, so there is no need to create a vari-
able of type Math to be able to use them. Feel free to explore this handy class. The following code
snippets present some examples of using the Math class.

Double myVar=0.0;
myVar = Math.Sqrt(49); // myVar = 7.0
myVar = Math.Round(8.881, 1); // myVar = 8.8
myVar = Math.Abs(-1388); // myVar = 1388
myVar = Math.PI; // myVar = 3.141…
myVar = Math.Sin(Math.PI / 2) // myVar =1.0

In the following Try It Out, you see some of these features in action.

NOTE There are some other features for using complex numbers inside the
.NET Framework. If you are serious about math in .NET, consult the .NET
documentation.

TRY IT OUT Simple Application for Calculation (FirstWPFApp.zip)

 1. Start Visual Studio. From the Start page, select New Project to open the New Project window.
Because you are going to build this code as a Windows application, select the Windows node
under Visual C#, and then select WPF Application. Provide a meaningful name for the project
and solution (such as fi rstWPFApp), specify the location where all the fi les of the solution will be
saved, and then click OK.

 2. Shortly after you click OK, the Visual Studio designer appears. The designer is used to create
the user interface of your WPF applications. Using the designer, click the Button control in the
Toolbox dockable window, and then drag and drop it on the main window of your application,
as shown in Figure 3-1. If you cannot see the Toolbox window, you can use the View menu to
turn it on.

c03.indd 72c03.indd 72 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 73

 3. Add two Textbox controls and three Label controls to the main window by double-clicking each
control type in the Toolbox or using the drag-and-drop technique. Change the position of the con-
trols to look like Figure 3-2.

FIGURE 3-1

 4. Now you are going to set some properties for the controls you added. In Visual Studio, the
Properties window is used for accessing and changing the properties of everything. Generally, in
order to use this window you have to select the intended object (control, window, component,
and so forth) and then fi nd the property you want to change. Click the
Button control, and in the Properties window change the Name of the
button to “btnAddition” and Content to “Add,” as shown in Figure
3-3. You can use the View menu to turn on the Properties window (and
every other window) if it is turned off.

 5. Changing the name of all controls to meaningful names is good pro-
gramming practice. For this Try It Out, change the names of two
textboxes to “txtFirstNum” and “txtSecondNum.” Clear the content
of the last label and change the content of two other labels to “First
Number” and “Second Number.” Your main window should be similar
to Figure 3-4.

FIGURE 3-2

FIGURE 3-3

c03.indd 73c03.indd 73 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

74 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

 6. Now the user interface is ready. Press F5 to see how it looks in runtime. Because the main
window contains no logic or code, nothing happens if you click the Add button. Stop debugging
by pressing Shift + F5 or the Stop button inside the Visual Studio.

 7. Now you add functionality to the Add button. Double-click the button to get to the code win-
dow. As you can see, the user interface is saved in the MainWindow.xaml fi le and the code in
MainWindow.xaml.cs. Windows user interface programs are event-driven. Events are actions
initiated by either a user or the system, whenever the user clicks a button, for example. Event-
driven applications respond to the various events that occur by executing code that you specify.
To respond to an event, you defi ne the event handler to execute when a particular event occurs.
When you double-click any control in Designer, Visual Studio creates the skeleton or stub code
for handling the default event of that control. Because you double-click the button, Visual Studio
adds skeleton code for the Click event handler for you.

 8. Add code to perform addition on two numbers inside the two textboxes you created in Step 3.
The Click event handler should resemble the following code:

private void btnAddition_Click(object sender, RoutedEventArgs e)
{
 //since the inputs (entered by user) are string
 //we have to convert them to double
 //get the first num
 double firstNum = 0;
 firstNum = double.Parse(txtFirstNum.Text);
 //get the second num
 double secondNum = double.Parse(txtSecondNum.Text);
 // + operator for string concatenate them
 label3.Content = firstNum.ToString() + " + " + secondNum.ToString()
 + " = " + firstNum + secondNum;
}

 9. Test the functionality of the application by pressing F5 on your keyboard. As you can see, you
implement a simple application that adds two numeric inputs provided by the user. As an exercise,
add three additional buttons for performing subtraction, multiplication, and division.

FIGURE 3-4

c03.indd 74c03.indd 74 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 75

How It Works

Programming in Windows is event-driven. You have to create some user interface controls for users
and provide event handlers for those controls. When a user or the system initiates events, code inside
the event handler will be executed. ArcGIS for Desktop applications follow the same model of devel-
opment. Usually you create commands, toolbars, and other user interface controls, and then provide
functionality for them using the event-driven model of programming; however, there are other events,
like change, open, or close events, that are initiated by the system when a map document is changed,
opened, or closed.

In this Try It Out, you created a WPF application. WPF (Windows Presentation Foundation) is a mod-
ern model and a more effi cient way of developing desktop applications for the Windows operating sys-
tem. Perhaps one of the most compelling advantages of WPF is that it offers a way to cleanly separate
the user interface from the programming logic that drives it. Using XAML (Extensible Application
Markup Language), it is possible to defi ne the UI of an application via XML markup using the designer
of Visual Studio or Microsoft Expression Blend and then connect that user interface to.NET code to
provide the program’s functionality. Usually (as you have seen in this Try It Out) the development life-
cycle of WPF applications starts with designing the user interface and continues with coding the func-
tionality needed for the application.

Another important point in this Try It Out was the use of the double.Parse method, which is dis-
cussed later in this chapter. You also will see how .NET provides several other ways to convert different
data types.

Arrays

Arrays are the basic structures used to store data in all programming languages. They are often used
to organize and work with groups of the same data type. In C#, you declare an array by suffi xing an
appropriate data type with brackets ([]) and then the name of your array:

string[] layerNames;

Each individual value in the array is set and accessed using its index inside the array. All arrays start
at a fi xed lower bound of 0. This rule has no exceptions. When you create an array in C#, you spec-
ify the number of elements. Because counting starts at 0, the highest index is actually one less than
the number of elements. (In other words, if you have fi ve elements, the highest index is four.) The
new operator is used to create the array and initialize its elements to their default values. The default
value for all numeric data is zero and for string is an empty string. Because the elements of the array
are referenced by a zero-based index, the following array holds two elements:

// layerNames array will contain two elements
string[] layerNames = new string[1];
layerNames[0]="cities";
layerNames[1]="states";

To initialize the elements of an array when the array is declared, you can use curly brackets ({}) to
list the values. Because the size of the array can be inferred, you do not have to state it,

c03.indd 75c03.indd 75 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

76 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

//layerNames contains four elements
string[] layerNames = {"cities","roads","railway","states"};

C# supports multidimensional arrays. When you declare the array, you separate the size of the
dimensions by commas. The following declaration creates a two-dimensional array of integers with
three rows and two columns:

string[,] layerDescriptions = new string[2,1];

In this case you use curly brackets inside curly brackets to initialize the array.

string[,] layerDescription = {{"cities","cities of the world"},
 {"roads","major road network'},
 {"states","states of the US"}};
// Access the value in
//first row and second column
string desc = layerDescription[0, 1];
//desc is now set to "cities of the world"

NOTE All intrinsic data types support what is known as a default constructor
(you will see what a constructor is later in this chapter). This feature allows you to
create a variable using the new keyword, which automatically sets the variable to
its default value. This way the C# compiler assigns numeric variables to 0, bool-
ean variables to false, character data types to empty (“ “), date data types to
1/1/0001, and object data types to null (which is an empty reference pointer).

//since the variable assigned to its default value
//the following line of code doesn't cause errors
int myInt = new int();
myInt = myInt +1;

Decision-Making

From many viewpoints, decision-making is the core of programming. All decision-making in all pro-
gramming languages starts with an expression (called a condition) that can be evaluated to true or
false. Based on the result of the evaluation of the condition, different blocks of code are executed.
To build a condition, you need at least a comparison operator (shown in Table 3-4) and two literals
or variables.

TABLE 3-4: Comparison Operators

COMPARISON OPERATOR MEANING EXAMPLE RESULT OF EVALUATION

== Equal to (20/5) == 4 true

!= Not equal to 2 != 3 true

> Greater than 2 > 3 false

c03.indd 76c03.indd 76 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 77

>= Greater than or

equal to

3 >= 4 false

< Less than 3 < 4 true

<= Less than or equal to 3 <= 3 true

In the examples shown in Table 3-4, you can replace literals with variables. You also can create
composite conditions using logical operators. Logical operators combine the results of conditional
operators. The three most commonly used logical operators are the And, Or, and Not operators,
shown in Table 3-5.

TABLE 3-5: Logical Operators

LOGICAL OPERATOR MEANING EXAMPLE RESULT

&& And (2 > 3) && (3 > 2) false

|| Or (2 > 3) || (3 > 2) true

! Not ! (3 > 2) false

The And operator (&&) combines two expressions and returns true if both expressions are true. The
Or operator (||) combines two expressions and returns true if either one is true. The Not operator
(!) switches the result of the comparison: a value of true returns false and a value of false returns
true. In the case of the And operator (&&), if the fi rst expression is false, the second expression is not
evaluated. Quite the opposite is the case with the Or operator: If the fi rst expression is evaluated to
true, the second expression is not evaluated. This behavior is called short circuit.

The if statement is the heart of decision-making in any programming language. The if statement
in C# is able to evaluate any combination of conditions and deal with various data types. The fol-
lowing code snippet demonstrates the use of the if statement,

if (layerName =="states")
{
 // do something with the states layer
}
else if (layerName == "roads" || layerName == "rails")
{
 // do something with both the roads and the rails layers
}
else
{
 // do something with the rest of the layers
}

The if block can have any number of conditions. If you test only a single condition, you don’t need
to include any else blocks. Keep in mind that the if statement matches one condition at most. For
example, if layerName is equal to "roads" the second condition is met and no other conditions will
be evaluated.

c03.indd 77c03.indd 77 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

78 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

C# also provides a switch statement that you can use to evaluate a single variable or expression
for multiple possible values. The only limitation is that the variable you’re evaluating must be an
integral numeric (int, short, long, and so forth), a boolean (bool), a character (char), a string
(string), or a value from an enumeration. Other data types cannot be evaluated in a switch state-
ment. In the following code snippet, each case examines the myLayer variable and tests whether it’s
equal to a specifi c layer name:

 switch (layername)
 {
 case "states":
 //do something with states Layer
 break;
 case "rails":
 case "roads":
 // do something with both the rails
 //and the roads layer
 break;
 default:
 // // do something with other layers
 break;
 }

Every branch in a switch statement must end with the break keyword. If you forget this keyword,
the compiler will alert you and refuse to build your solution. The only exception is if you choose to
stack multiple case statements directly on top of each other with no intervening code. This allows
you to mimic the logical Or operator in switch statements and hence write one segment of code
that handles more than one case.

Unlike the if statement, in C# the switch statement is limited to evaluating equality conditions.
(Maybe this handy feature will be implemented in future versions of this powerful programming
language.) However, the switch statement provides clearer syntax than the if statement for situa-
tions in which you want to test a single variable.

Iteration

All programming languages provide several ways to repeat blocks of code until a condition has been
met. C# provides the following four iteration statements:

 ➤ for

 ➤ for/each

 ➤ while

 ➤ do/while

The for and foreach loops are ideal for iterating through sets of known and fi xed sized data like
arrays and collections (you will see some of them in the next chapter). The while and do/while
statements are ideal when the number of iterations is not known until runtime or the number of
iterations depends on input from the user.

The for loop is a basic statement in many programs. It allows you to execute a block of code a
defi ned number of times using a built-in counter. To create a for loop, you need to specify a starting

c03.indd 78c03.indd 78 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 79

value, an ending condition, and the amount of increment with each iteration. The following code
snippet shows a simple for block for calculating the summation of 1 to 9.

 //whenever we use the new keyword with intrinsic data types
 //they initialize to their default values
 //which is 0 for numeric and "" for string and char
 int sum = new int();
 for (int i = 0; i < 10; i++)
 {
 sum += i;
 }

Notice that the for loop starts with parentheses that indicate three important pieces of information.
The fi rst portion, int i = 0, creates the counter variable i and sets its initial value to 0. The sec-
ond part, i < 10, specifi es the condition that must be met for the loop to continue. This condition
is tested at the start of every pass through the block. If for each iteration i is greater than or equal to
10, the condition will evaluate to false, and the loop will end. The third portion, i++, increments
the counter variable. In this example, the counter is incremented by 1 in each iteration. That means
i will be equal to 0 for the fi rst iteration, equal to 1 for the second iteration, and so on. However,
you could adjust this statement so that it decrements the counter (or performs any other operation
you want, such as i+=2 for setting the increment as 2).

The C# foreach keyword allows you to iterate over all items within an array (or a collection
object). In this case, you just provide the counter like a variable; there is no need to introduce condi-
tion and increment values.

int sum = 0;
int[] numbers = { 1, 3, 5, 7, 8 };
foreach (int i in numbers)
{
 //do something with numbers
 sum += i;
}

The foreach loop has one key limitation: It’s read-only. In other words, you cannot change any
value inside the foreach loop. For example, if you want to iterate an array and change the values in
that array at the same time, as shown in the following code snippet, the compiler will raise an error
saying that the foreach iteration variable cannot be assigned to a new value.

int sum = 0;
int[] numbers = { 1, 3, 5, 7, 8 };
foreach (int i in numbers)
{
 //compiler error for the following line of code
 i+=2;
 //do something with numbers
 sum += i;
}

In this case, you have to resort to a for loop.

C# supports while and do/while loops that test a specifi c condition before or after each iteration of
the loop. When the condition of the loop evaluates to false, the loop is exited. The following code

c03.indd 79c03.indd 79 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

80 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

snippet executes 10 times using a while loop. In this code, when the loop is exited, the code inside
the loop was executed 10 times and the counter is equal to 10.

int i = 0;
while (i < 10)
{
 //following line of code executes ten times
 i += 1;
}
//here i is equal to 10

You can also place the condition at the end of the loop using the do/while syntax. In this case, the
condition is tested at the end of each iteration through the loop.

int i = 0;
do
{
 //following line of code executes ten times
 i += 1;
}
while (i < 10);
//here i is equal to 10

Both of these examples are alike, unless you evaluate a condition which is false from the beginning.
In this case, since the while loop evaluates the condition at fi rst, the code inside the while loop
won’t execute. The do/while loop, on the other hand, will always execute the code at least once,
because it doesn’t evaluate the condition until the end.

NOTE Use the break statement to exit any type of loop. It’s common program-
ming practice to evaluate a condition (using an if statement in a loop) and if the
condition has been satisfi ed then exit the loop, as shown in the following code
snippet:

 string[] layerNames = { "cities", "roads", "railway", "states" };
 foreach (string layer in layerNames)
 {
 if (layer == "roads")
 {
 //you have found your layer object and
 //there is no need to go on the iteration
 break;
 }
 }

Also you can use the continue statement when you want to skip the execution
of the current iteration and go to the next iteration.

string[] layerNames = { "cities", "roads", "railway", "states" };
string listOfLayers = "";
foreach (string layer in layerNames)

c03.indd 80c03.indd 80 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 81

{
 if (layer == "railway")
 {
 continue;
 }
 // + operator on string data type concatenate the strings
 listOfLayers += layer + "";
}

Object Manipulation

It is fair to say that everything in .NET is designed with object-oriented concepts in mind. Even a
simple literal string like pouria is a full object. You can test this behavior simply by putting a dot
or period symbol (.) at the end of the string value. In fact, even ordinary variables are really fully
fl edged objects in .NET. This means that everything, such as common data types, has the built-
in intelligence to handle basic operations (such as counting the number of characters in a string).
For example, in the previous Try It Out you learned about how to use the double class’s Parse()
method to convert the string representation of a number to its corresponding double precision fl oat-
ing point number. In addition, all data types in .NET include a ToString() method. In variables of
intrinsic data types (like int and double), the result of the ToString()method is the string repre-
sentation of the given variable. The following code snippet demonstrates how to use the ToString()
method with a double variable:

// + operator for string concatenating strings them
label3.Content = firstNum.ToString() + " + " + secondNum.ToString() + " = " +
 firstNum + secondNum;

NOTE The ToString() method is provided by the System.Object class, which
is the ultimate base class of all classes (types) in the .NET Framework. Because
all classes are derived from the System.Object class, the ToString() method
is available to all classes in .NET.

This behavior is part of the object-oriented nature of .NET. Put simply, an object is something that
has properties and methods and can fi re events. You have already used some objects, such as buttons
and textboxes. In the preceding Try It Out, to set the name for the button on your main window
(“btnAddition”) you set the Name property of the button object. You used the Click event of the
btnAddition object to respond to users’ clicks. The methods, properties, and events of an object are
members of that object. You can access all the members of an object by putting a dot or period after
the name of an object (this notation is called object notation syntax).

You use the arithmetic operators of .NET or the methods of the Math class for numeric data types.
In contrast, the other data types use their members to perform primarily nonarithmetic activities.
The following sections look at some of the more interesting (for our purposes) members of the data
types and structures that have been discussed so far.

c03.indd 81c03.indd 81 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

82 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

Useful Members of the String Data Type

The string data type is almost always used in all types of applications. For this reason, it is good to
spend some time to master all its useful methods and properties. The following code snippet shows
some of the methods of the string data type:

string GIS = " Geographical Information System ";
GIS = GIS.TrimStart();
// "Geographical Information System "
GIS = GIS.ToUpper();
// "GEOGRAPHICAL INFORMATION SYSTEM"
GIS = GIS.Replace("GEOGRAPHICAL", "Geospatial");
//Geospatial INFORMATION SYSTEM
bool IsGeospatial = GIS.Contains("Geospatial");
// true
int length = GIS.Length;
//32

char[] GISCharArray = GIS.ToCharArray();
// 32 elements are in array
char myInitial = GISCharArray[4]; //p

string[] sep= {" "};
string[] GISStringArray = GIS.Split(sep,
 StringSplitOptions.RemoveEmptyEntries);

//GISStringArray[0]="Geospatial", GISStringArray[2]="Systems"
string g = "Geospatial";
string i = "Information";
string s = "Systems";
string gis = string.Format("GIS is stand for {0} {1} {2}", g,i,s);
gis = "GIS is stand for " + g + " " + i + " " + s;

Methods such as Trim(), ToUpper(), and Replace() generate new strings, and each of them sub-
stitutes the current value of the GIS variable with a new string value. The Length property of any
string variable returns the number of characters inside the string variable. As the name suggests,
the ToCharArray() method returns a char array. One of the more useful methods in this code snip-
pet is the Split() method. Look at the GIS.Split() method in the preceding code. Notice that
this method can be used in several ways based on the input that it expects, which is controlled by
the arguments in the parentheses. This is called method overloading. Most of the prebuilt methods
in .NET provide this feature. The preceding code snippet uses the Split() method to split the
string variable based on the separator array, explained earlier in this chapter. The plus opera-
tor (+) is used to concatenate string values. As is true of many things in .NET, string concatenation
can be done using other approaches too. One of those approaches is the “Format()” method of
the string class. Simply put, when you defi ne a string literal that contains segments of data whose
value is contained in other variables, you can specify a placeholder within the string literal using one
curly bracket per variable. At runtime, the value(s) passed into string.Format() are substituted for
each placeholder. In fact, this method is used to format any intrinsic data type. The following code
snippet demonstrates some of its usage:

double num = 88.1388;
string output = "";
//you can use format characters in the Format method

c03.indd 82c03.indd 82 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 83

output = string.Format("{0:c}",num);
//$88.14 . The c character is used for currency
output = string.Format("{0:f1}", num);
//88.1 - The f is for floating point and
//the 1 is for the minimum number of digits
output = string.Format("{0:###,###.000000}", num);
//88.138800
output = string.Format("{0:000,###.000###}", num);
//000,088.1388

The following code provides a way to create an acronym out of a string variable by combining
some other useful members of the string class:

string GIS = " Geographical Information System ";
//Creating an acronym
//get rid of spaces at the beginning and the end of string
GIS = GIS.Trim();

string acronym = GIS[0].ToString();
//GIS[0] is char so you need to convert it to a string

while (GIS.Contains(" "))
 {
 GIS = GIS.Substring(GIS.IndexOf(" ")+1);
 acronym += GIS.Trim()[0].ToString();
 }

Useful Members of the Array Type

Arrays also behave like objects in the world of .NET. (Technically, like other classes in .NET, they
are derived from the System.Object class). So you can use the familiar object notation syntax to
access the members of an array. Take a look at useful members of the array class in action:

int[,] intArray = { {1,100}, {2,200}, {3,300}, {4,400}};

int lengthOfArray = intArray.Length;
//result=8 . Total number of elements

lengthOfArray = intArray.GetLength(0);
//result=4 . Number of elements in specified dimension

int rows = intArray.GetUpperBound(0);
//result=3 . Number of rows = 4 (since it is zero based)

int cols = intArray.GetUpperBound(1);
//reslt=1 . Number of columns= 2 (since it is zero based)

Data Type Conversion

Converting data from one data type to another (casting) is a common programming task. For
example, in the fi rst Try It Out in this chapter, you retrieved text input (string data) from a user
that contains a number you want to use for a calculation. You might also need to take a calculated
value and transform it into text; to show it to the user, you have to convert the calculated value to a
string. Conversions are of two types: widening and narrowing. Widening is the term used to specify
an implicit upward cast that does not result in a loss of data. For example, you can always convert a

c03.indd 83c03.indd 83 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

84 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

32-bit integer (int data type) into a 64-bit integer (long data type). You won’t need any special code
to perform widening. Narrowing is the opposite of widening, in that a larger data type is stored
within a smaller data type variable. It is important to know that all narrowing conversions result in
a compiler error, even when you are sure that the narrowing conversion should indeed succeed. For
example, the following code always results in a compiler error:

int intAge = 120;
byte byteAge = intAge;

Here, the value of the int variable (intAge) is safely within the range of a byte variable; therefore,
you would expect the narrowing operation to not result in a runtime error. However, C# is a lan-
guage built with type safety in mind, so you receive a compiler error. For this reason, you have to
explicitly tell the compiler that you wish to do the conversion even if it results in loss of data. You do
this using the explicit casting operator, which is ().

int intAge = 120;
byte byteAge = (byte)intAge;

Even if you use explicit casting to perform a narrowing conversion, there is a risk of loss of data. For
example, consider the code shown here, which results in an overfl ow:

int intNum = int.MaxValue;
long lngNum = intNum + 1L;
//lngNum is equal to 2147483648

intNum = (int)lngNum;
//at this point intNum is exactly equal to int.MinValue (-2147783648)

This code uses the MaxValue property of the int class to access the maximum number that can be
stored in an int variable. Then the long variable adds 1 to that number. Notice that you have to use
the L character to defi ne 1 as long; otherwise, the compiler treats 1 as an integer and performs inte-
ger addition, which results in loss of data and then assigns that value to the long variable.

In C#, you will simply end up with incorrect data in intNum. To avoid this problem, either check
that your data is not too large before attempting a narrowing conversion or use a checked block, as
shown in the following code snippet. The checked block enables overfl ow checking for a portion of
code. If an overfl ow occurs, you’ll automatically receive an error.

// the following block of code results in a runtime error
//Arithmetic operation resulted in an overflow
checked
{
 int intNum = int.MaxValue;
 long lngNum = intNum + 1L;
 //lngNum is equal to 2147483648
 intNum = (int)lngNum;
 //intNum is exactly equals to int.MinValue (-2147783648)
}

In addition to casting operators, you can always use the methods of the Convert class to perform
widening or narrowing conversions. This class provides methods for conversion among intrinsic
data types. For example, the preceding code can be written using a method of the Convert class, as
shown in the following code snippet:

byte byteAge =Convert.ToByte(intAge);

c03.indd 84c03.indd 84 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 85

Enumerations

You often will need to assign the value of a variable to one of several related, predefi ned constants.
In these cases, you can create an enumeration type to group together the values. Enumerations (or
enum types in C#) associate a set of integer constants to names that can be used in code. For exam-
ple, the following code creates an enum type used to defi ne three different kinds of feature classes:
point, line, and polygon.

enum FeatureType
{
 point,
 line,
 polygon
}

You can use the FeatureType enumeration as a special data type that is restricted to one of three
possible values. You assign or compare the enumerated value using the dot notation, as represented
in the following example:

// Create a new variable of enum type
// and set it equal to the FeatureType.point constant.
FeatureType myGPSdata = FeatureType.point;

NOTE Enumerations are used widely in .NET and ArcObjects. You won’t need to
create your own enumerations to use in ArcObjects or .NET unless you’re designing
your own components. However, the concept of enumerated values is extremely
important, because the .NET class library as well as ArcObjects uses it extensively.
For example, when you want to add a new fi eld (programmatically or through the
UI of ArcMap) to the attribute table of a feature class, you have to provide the data
type of the fi eld. In that case, you have to use one of the values in the esriField-
Type enumeration inside the geodatabase model. The following table lists some of
the more frequently used elements in the esriFieldType enumeration.

ESRIFIELDTYPE ENUMERATION

VALUE NAME MEANING IN C#

0 esriFieldTypeSmallInteger short

1 esriFieldTypeInteger int

2 esriFieldTypeSingle fl oat

3 esriFieldTypeDouble double

4 esriFieldTypeString string

Internally, enumerations are maintained as numbers. Clearly, enumerations
 create more readable code. They also simplify coding, because once you type
in the enumeration type name and add the dot (.), Visual Studio will display a list
of possible values using IntelliSense.

c03.indd 85c03.indd 85 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

86 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

WARNING Programmers often talk about the process of enumerating, which
means to loop, or iterate, over a collection. As you have learned, enums or enu-
merations are sets of constant values. In ArcObjects, you have both of these
concepts but usually enums refer to looping objects and enumerations refer to a
set of constant values.

TRY IT OUT Creating a Simple Calculator (SimpleCalculator.zip)

 1. Start Visual Studio and create new project using either the File menu or the New Project link in
the Start Page. Select WPF Application under Visual C# ➪ Windows, provide SimpleCalculator
as the name of the project, and click OK.

 2. Add 16 buttons and 2 labels to the MainWindow of your application from the Toolbox dockable
window. Provide appropriate names for them (use lblResult and lblSummary for the two labels).
Change the content property of the buttons to match Figure 3-5, and make sure that the labels
have empty content, because their content will be used later in the calculations.

 3. You want the user to click on the number buttons to specify the fi rst operand, then click on one of
four operator buttons, and after that again use the number buttons to enter the second operand,
and fi nally, press on the equal sign to see the result and summary of its calculation. One way to
do this procedure is to insert each number (the content property of each number button) into the
label control and convert a whole string to a double variable when the user clicks on operators

FIGURE 3-5

c03.indd 86c03.indd 86 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 87

and equal buttons. For this reason, you need to defi ne three double variables and an enumeration
for operators. Somewhere in the MainWindow.xaml.cs class block, which is not inside any other
block of code, insert the required code for declaring those variables. Your code should look like
the following code snippet:

public partial class MainWindow : Window
{
 double firstNum, secondNum, result;
 enum Operator
 {
 Addition,
 Subtraction,
 Multiplication,
 Division
 }
 Operator SelectedOperator;
 public MainWindow()
 {
 InitializeComponent();
 }
}

 4. Now you are going to write code to handle the numeric buttons’ Click event. As you’ve probably
guessed, you can do this by clicking each button and appending the number of that button to the
text inside the label. For example, for the button with “1” as its content the event handler should
be something like the following code:

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 lblResult.Content += "1";
 }

Instead of writing code for the event handler of each button, you can write general event handler
code that can be used by all the number buttons. Double-click one of the numeric buttons (such as
the button with 1 as its content) and Visual Studio will create an empty event handler for the but-
ton’s Click event. Rename the event handler to NumberClick.

In NumberClick() you need to cast the sender parameter of the event to the Button class and
then use its content. The following code shows the NumberClick event handler:

private void NumberClick(object sender, RoutedEventArgs e)
{
 string enteredNum = "";
 Button clickedButton = (Button)sender;
 enteredNum = clickedButton.Content.ToString();
 lblResult.Content += enteredNum;
}

c03.indd 87c03.indd 87 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

88 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

 5. At this moment, if you look at the event of the button with “1” as
its content (the double-clicked button), you will notice that in the
list of events NumberClick is entered as the handler for the Click
event. You can access the events by clicking the Events tab inside the
Properties window, as shown in Figure 3-6.

 6. Set NumberClick as the handler for the Click event for all number
buttons (from 0 to 9). Notice that as you set any property or event
in the Properties window, the XAML code for that control refl ects
the changes.

 7. Double-click on the dot button (.) and write the following lines of
code as the event handler:

 private void buttonPoint_Click(object sender, RoutedEventArgs e)
 {
 if (!lblResult.Content.ToString().Contains("."))
 {
 lblResult.Content += ".";
 }
 }

 8. Double-click on one of the operator buttons (such as +). You are going to write general code for
handling the Click event of four operators in one event handler.

 private void btnAdd_Click(object sender, RoutedEventArgs e)
 {
 //get the first number
 firstNum = double.Parse(lblResult.Content.ToString());
 //determine the operator
 string strOperator = ((Button)sender).Content.ToString();
 switch (strOperator)
 {
 case "+":
 SelectedOperator = Operator.Addition;
 break;
 case "-":
 SelectedOperator = Operator.Subtraction;
 break;
 case "*":
 SelectedOperator = Operator.Multiplication;
 break;
 case "/":
 SelectedOperator = Operator.Division;
 break;
 }

 //clear the lblResult to make it ready for second number
 lblResult.Content="";
 }

 9. Use the Events tab of the Properties window to set the preceding block of code as the event han-
dler for the Click event of four operator buttons (+, -, *, /).

FIGURE 3-6

c03.indd 88c03.indd 88 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 89

 10. Double-click the equal (=) button and change its event handler to match the following code:

private void buttonEqual_Click(object sender, RoutedEventArgs e)
 {
 secondNum = double.Parse(lblResult.Content.ToString());

 switch (SelectedOperator)
 {
 case Operator.Addition:
 result = firstNum + secondNum;
 lblSummary.Content = string.Format("{0} + {1}", firstNum, secondNum);
 break;
 case Operator.Subtraction:
 result = firstNum - secondNum;
 lblSummary.Content = string.Format("{0} - {1}", firstNum, secondNum);
 break;
 case Operator.Multiplication:
 result = firstNum * secondNum;
 lblSummary.Content = string.Format("{0} * {1}", firstNum, secondNum);
 break;
 case Operator.Division:
 result = firstNum / secondNum;
 lblSummary.Content = string.Format("{0} / {1}", firstNum, secondNum);
 break;
 }

 lblResult.Content = result;
 }

 11. Press F5 to run the application and test its functionality.

How It Works

In this Try It Out, you added some functionalities in an effi cient manner. You wrote general code for
handling the Click event issued by many objects (controls). You could write code more simply for each
of the controls, but this approach results in less maintainable code. Suppose you wish to add some other
functionality to your simple calculator or you want to include other logics in your handlers. In both
cases, you have to change all event handlers, which is a tedious task. But using the method you used
in this Try It Out, you wrote code in one position and wired many controls to it. Also you used the
“sender” argument of the event handler block, which is added automatically by Visual Studio when it
creates skeleton code for event handlers. Put simply, a “sender” object conveys information about the
initializer of the event. Because the “sender” is of type Object, you need to cast it to “Button” to make
use of it. At this point, your simple calculator is ready but it still doesn’t contain the necessary code
to handle the exceptions. For example, if a user enters 0 as divisor, this simple calculator crashes. You
return to this topic in the next chapter, which introduces the concept of exception handling.

Methods

Methods are the most basic building blocks used to organize your code. Fundamentally, a method is
a named group of one or more lines of code that are grouped together for the purpose of reusability.

c03.indd 89c03.indd 89 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

90 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

In essence, each method performs a distinct logical task. Breaking your code down into methods
helps you more easily manage your application.

When you declare a method in C#, the fi rst part of the declaration specifi es the data type of the
return value and the second part indicates the method name. If your method doesn’t return any
data, you have to use the void keyword. Notice that the method name should always be followed
by parentheses so the C# compiler will recognize it as a method. The following code shows two
methods:

private int AddTwoNumbers()
{
 int firstNum = 10;
 int secondNum = 100;
 //you have to use the return keyword
 return firstNum + secondNum;
}
public void doSomething()
{
 //code goes here
 //no return keyword
}

In the preceding example, neither method specifi es its accessibility. This is a common C# con-
vention. By default, if you omit the accessibility keywords (such as private and public) for
methods or variables, the C# compiler regards them as private. Private methods or variables are
available only locally. On the other hand, public methods or variables can be called and accessed
by all the other classes in your application.

private int AddTwoNumbers()
{
 int firstNum = 10;
 int secondNum = 100;
 //you have to use the return keyword
 return firstNum + secondNum;
}

public void doSomething()
{
 //code goes here
 //no return keyword
}

Calling or invoking any method is a simple task: Type the name of the method, followed by paren-
theses. If your method returns data, you have the option of using the data it returns or ignoring it.

int intAddition = AddTwoNumbers();

As you can see, AddTwoNumbers() just adds two hard-coded values. Using parameters, you can pass
any int number to the method.

private int AddTwoNumber(int firstNum, int secondNum)
{
 return firstNum + secondNum;
}

c03.indd 90c03.indd 90 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

The C# Language ❘ 91

Notice that you declare parameters in a similar way to variables. When you wish to call methods
that accept parameters, you have to provide them with what they expect to receive.

int intAddition = AddTwoNumbers(10,100);

C# supports method overloading. You overload methods by defi ning multiple methods that have
the same name with different signatures. A method signature is a combination of the name of the
method and the number and data type of its parameters. If you change the number and data type of
parameters for a method, you create a different method signature.

When you call the method, the CLR automatically chooses the correct version by examining the
parameters you supply. The following code shows the AddTwoNumbers() method with different
signatures:

private double AddTwoNumbers(int a, int b)
{
 return a + b;
}

private double AddTwoNumbers(float a, float b)
{
 return a + b;
}

private double AddTwoNumbers(byte a, byte b)
{
 return a + b;
}

.NET heavily uses method overloading in most of its classes. The best thing about method overload-
ing is that it enables you to use a fl exible range of parameters while centralizing functionality under
common names.

C# 4.0 supports optional parameters. As the name implies, optional parameters are the parameters
which have a default value. The default value of the optional parameter is used when the caller of
the method doesn’t provide the value for that parameter.

private string Multiplication(double a, double b, bool format = false)
{
 if (format == true)
 {
 return string.Format("{0:f4}", a * b);
 }
 else
 {
 return string.Format("{0}", a * b);
 }
}

In the preceding example, the caller can call the method with or without providing the optional
parameter. The following code illustrates using the preceding method:

string testMultiplication = "";
testMultiplication = Multiplication(1388.0, 8.8);

c03.indd 91c03.indd 91 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

92 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

//12214.4

testMultiplication = Multiplication(1388.0, 8.8, true);
//12214.4000

Notice that when you want to use the optional parameters you have to place them at the end of
the parameter list. Sometimes you need to create a method with multiple optional parameters. For
example, if you wish to make your “Multiplication” method more fl exible you can use the following
code:

private string FlexibleMultiplication(double a, double b, bool formatNumber =
 false, bool useCurrencySign = false)
 {
 string result = "";

 if (formatNumber == true)
 {
 if (useCurrencySign == true)
 {
 result = "$" + string.Format("{0:f4}", a * b);
 }
 else
 {
 result = string.Format("{0:f4}", a * b);
 }
 }
 else
 {
 if (useCurrencySign == true)
 {
 result = "$" + Math.Round(a*b,2);
 }
 else
 {
 result = string.Format("{0}", a * b);
 }
 }

 return result;
 }

In this case, you have lot more fl exibility with optional parameters, as shown in the following code
snippet:

testMultiplication = FlexibleMultiplication(28.10, 20.09);
//564.529

testMultiplication = FlexibleMultiplication(28.10, 20.09, true);
//564.5290

testMultiplication = FlexibleMultiplication(28.10, 20.09, false, true);
//$564.53

testMultiplication = FlexibleMultiplication(28.10, 20.09, true, true);
//$546.5290

c03.indd 92c03.indd 92 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Object-Oriented Programming in C# ❘ 93

Notice that as the number of optional parameters grows, providing optional parameters in the order
defi ned by the method signature will be cumbersome. In this situation, you can use named param-
eters, a new feature in C# 4.0. Using named parameters you select the parameters you want to set by
name. To use this feature, all that is needed is a colon (:) after the name of the parameter.

testMultiplication = FlexibleMultiplication(b: 20.09, a: 28.10, useCurrencySign:
 true);

Named parameters are not restricted to optional parameters; you can use this feature with manda-
tory parameters as well.

Related to the concept of methods in C# are XML comments, or documentation comments. You
may notice that the autocomplete list for the methods of .NET provides descriptive help about the
purpose, parameters, and return value (if any) of methods. But your methods don’t provide such a
feature. You can use XML comments for making your methods self-describing using XML tags.
Type three slashes (///) before the method declaration to insert XML tags for any methods and
provide a description for every tag. The following code shows this for the AddTwoNumber() method:

/// <summary>
/// Adds two input numbers
/// </summary>
/// <param name="firstNum">first integer number for addition</param>
/// <param name="secondNum">second integer number for addition</param>
/// <returns>summation of the first and second input</returns>
private int AddTwoNumber(int firstNum, int secondNum)
{
return firstNum + secondNum;
}

When you try to call this method in Visual Studio, the
autocomplete list will show all the required information
for calling the method in an elegant fashion, as shown in
Figure 3-7.

You can fi nd the source code for all the discussed methods in the Methods.zip fi le in the down-
loads for this book on Wrox.com.

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING IN C#

Object-oriented programming (OOP) is an approach to software development in which the organi-
zation of the software is based on objects that interact with each other to accomplish a task. This
interaction takes the form of messages passing back and forth between the objects. In response to a
message, an object can perform an action. Classes are the code defi nitions for the objects and provide
a template for the many objects that can be instantiated from them. From a class, you can create as
many objects as you need. For example, you might have a class that represents a geographical feature
that can be used to store data about the attributes and geometry of real-world objects. You can store
many geographical features by creating several instances of that class. These instances are called
objects. Classes defi ne the template for the objects using three key features:

 ➤ Properties: Enable you to access object state data. Some properties are read-only,
which means they cannot be modifi ed, while others can be easily changed. For example,
int.MaxValue is a read-only property of the int class.

FIGURE 3-7

c03.indd 93c03.indd 93 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

94 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

 ➤ Methods: Methods defi ne the behavior or actions of an object. Unlike properties, methods
are used for actions that perform a distinct task or may change the object’s state (prop-
erty of an object) signifi cantly. The previous section of this chapter covered this feature.
AddTwoNumber() is an example of a method or behavior that can be performed by an
object.

 ➤ Events: Events provide notifi cation that something has happened. You saw this in action
when you coded the event handler for the click events of the button controls in the simple
calculator. The button object fi res a click event, which your code can react to using an event
handler. Events often convey information about the initializer of the event through event
arguments.

In addition to properties, methods, and events, classes contain their own code and internal set
of private data and constructors. Classes behave like black boxes, which means when you use an
object, you don’t care about how the class works or what low-level details (such as algorithms)
it’s using. Instead, you care about the properties, methods, and events that are publicly available.
Together these public properties, methods, and events are called members of a class. The members
of a class defi ne what is called the public interface of that class.

Object-Oriented Programming in Action

It is fair to say that everything in OOP is about using and creating classes and objects. In order to
create a class in C# you use a special class block. In its simplest form, you use the accessibility key-
words followed by the class name, as shown in the following code snippet:

public class GeographicFeature()
{
}

You can defi ne as many classes needed in the same class fi le. However, good coding practices sug-
gest that in most cases you make use of a single fi le for each class. Classes exist in many fl avors.
They may represent an actual thing in the real world (such as city and road), they may represent
some programming abstraction (such as an application’s window), or they may be just a convenient
way to group related functionality (as with the Math class). Deciding what a class should represent
and breaking down your code into a group of interrelated classes are part of the art of program-
ming. A short example will help you grasp the nuts and bolts of OOP.

 1. Create a new project and select WPF Application as the template. Name it OOP.

 2. After Visual Studio creates the necessary fi les for your project, right-click the project in
Visual Studio’s Solution Explorer window and choose Add ➪ New Item from the context
menu, then select Class Item as the new Item. Name it City and click OK. For the time
being, ignore the namespace and using keywords and just pay attention to the defi nition of
your class.

As the name suggests, this class will represent city objects for a fi ctional GIS system. The
City class is an abstraction of a real-world city, which means you are not going to include
all the details of the city in your simple City class. As with other things in the real world,
you cannot create fully detailed computer models of a city — but the main reason for the
abstraction is that you simply don’t need all the details.

c03.indd 94c03.indd 94 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Object-Oriented Programming in C# ❘ 95

 3. Once you have defi ned your class code, you need to add some basic pieces of data for it. The
following code snippet defi nes three private member variables that store information about
the name, country, population, and area of the city:

 public class City
 {
 private string name;
 private string country;
 private long population;
 private decimal area;
 }

A local variable inside a method can be accessed only locally (in the place where it is declared). Also,
its lifetime is limited to the execution time of the containing method. This means the local variable
exists only until the current method ends. On the other hand, a local member variable inside a class
(which is called a fi eld) is available to all the methods in the class, and it lives as long as the contain-
ing object lives.

When you create a member variable, you set its accessibility using access modifi er keywords. The
accessibility determines the visibility of a member. In other words, it determines whether other parts
of your code are able to read and alter this member or not. For example, all the fi elds in your City
class are private, which means all the other classes in your project will not be able to read or modify
any of them. Only the code in the City class will have that capability. If you defi ned the area fi eld
as public, you would be able to make it accessible for other classes.

Local variables don’t support any accessibility keywords, because they are never available to any
code beyond the current containing method. Generally, when you wish to reuse your code between
multiple classes or when you start to create multiple classes, accessibility becomes much more
important. C# provides the following accessibility keywords:

 ➤ public: Any member decorated with the public keyword can be accessed by any class.

 ➤ private: This keyword means the member can be accessed only inside the containing class.
In other words, you can use private members only in the class which declares them.

 ➤ internal: Members that have internal accessibility can be accessed in any classes in the
current assembly. The assembly is the compiled fi le of the code, such as a .dll fi le.

 ➤ protected: Members that have this keyword can be accessed by the members in the current
class as well as in any inherited class.

 ➤ protected internal: This keyword is used for members that can be accessed by members
in the current assembly (as with internal) and by members in any class that inherits from
this class (as with protected).

The accessibility keywords don’t apply only to fi elds. They also apply to methods, properties, and
events.

When creating an object, you need to use the new keyword. The new keyword instantiates the
object, which means it allocates a piece of memory and creates the object there. You use a variable
to point to that piece of memory (remember that a variable is just a memory address which has an
identifi er). If you declare a variable for your object without using the new keyword, you’ll receive the

c03.indd 95c03.indd 95 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

96 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

infamous “null reference” error when you try to use your object (the variable which points to that
object). That’s because the object you are attempting to use doesn’t actually exist, and your variable
doesn’t point to anything at all. The following code snippet instantiates a City object:

City shiraz = new City();
//Also you could instantiate an object in two steps
City paris;
paris = new City();

//releasing memory which was allocated to this object
paris = null;

In .NET, you almost never use the last line. That’s because CLR uses a garbage collection service.
The garbage collection service runs periodically and releases objects when the variables pointing to
them go out of scope. Objects are also released when your application ends.

In some cases, you might want to assign an instance that already exists to your object variable or
you might receive a live object as a return value from a method. In this case, you don’t need to use
the new keyword. See the following example.

City dublin = getCityByName("Dublin");

Defi ning Properties

At the moment, the simple City class is useless because it has no public interface. All its informa-
tion is private and unreachable from the outside world and other classes won’t be able to set or get
its information. To overcome this shortcoming, you could simply use the public keyword and make
the member variables accessible to the outside world. Unfortunately, this approach is considered bad
programming practice because it could cause many problems. Generally speaking, making fi elds of
a class accessible would give other objects open and free access to alter every piece of information,
even allowing them to apply invalid or inconsistent data. To avoid this, you can add a property
block through which your code can manipulate City objects in a safe and logical fashion.

The property block has two parts. The get part allows data to be read, and the set part is for writ-
ing data in a memory location. In some cases, you might omit one of these parts, such as when you
want to create a property that can be read but not modifi ed. In this case, you omit the set part to
make it a read-only property. In the following code, the Name property is just a gateway for reading
and writing the name local fi eld. Notice that in the set part of the property, you access the value
that’s being supplied through the value keyword.

public string Name
{
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
}

c03.indd 96c03.indd 96 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Object-Oriented Programming in C# ❘ 97

The set and get parts of a property are similar to any other type of method in that you can write
as much code as you need. For example, the property could raise an error to alert the client code of
invalid data and prevent the change from being applied. Or, it could check any data supplied for the
property, and if it encounters invalid data it sets the local fi eld to a default value. The following code
does this in a simple way for the Population property:

private long population;
public long Population
{
 get
 {
 return population;
 }
 set
 {
 if (value > 0)
 {
 population = value;
 }
 else
 {
 population = 0;
 }
 }
}

The client can now instantiate and confi gure the object by using its properties and the familiar
object notation syntax. See the following example.

City hannover = new City();
hannover.Name = "Hannover";
hannover.Population = 600000;

If you have properties that do nothing except set or get the value of a private member variable, you
can simplify your code using a C# language feature called automatic properties. Automatic proper-
ties are properties without any code and without any corresponding private member. When you use
an automatic property, you declare it, but you don’t provide the code for the get and set parts and
also you don’t declare the matching private variable. The C# compiler behind the scene adds the
necessary details.

public string Name
{
get;
set;
}

public string Country
{ get; set; }

At this point, the fi nal City class should be similar to the following code:

c03.indd 97c03.indd 97 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

98 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

class City
{
 public string Name
 { get; set; }
 public string Country
 { get; set; }
 public decimal Area
 {
 get;
 set;
 }
 private long population;
 public long Population
 {
 get
 {
 return population;
 }
 set
 {
 if (value > 0)
 {
 population = value;
 }
 else
 {
 population = 0;
 }
 }
 }
}

Defi ning Methods

The current City class only represents a package of data. This type of class is often useful for send-
ing packages of data to and from other classes or between methods. However, it’s more common to
add functionality to your classes along with the data. You use methods to provide functionality to
your classes. The following code demonstrates how to defi ne a method for the City class.

public decimal getPopulationDensity()
{
 return this.Population / this.Area;
}

Note that you use the this keyword to refer to the current object so this.Population means the
Population property of the current object.

Defi ning Constructors

Currently, the City class has an issue. Ideally, classes should ensure that their instances are always
in a valid and consistent state. In other words, they must be sure about the existence of all the
required properties for their instances. For the City class, if you try to use the getPopulationDen-
sity method you will cause an error for an object that doesn’t have value for its Area property. To
resolve this issue, you need to furnish your class with one or more constructors.

c03.indd 98c03.indd 98 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Object-Oriented Programming in C# ❘ 99

As the name implies, a constructor is a method inside a class that executes when an instance of a
class is created. In C#, the constructor is always a method with the same name as the class. Unlike a
normal method, the constructor doesn’t defi ne any return type (not even void). The following code
example is a constructor of the City class:

 public City(string name, decimal area, long population)
 {
 // you could use Name but using this.Name makes
 //your code more readable
 this.Name = name;
 this.Area = area;
 this.Population = population;
 }

And here is an example of the defi ned constructor:

 City shiraz = new City("Shiraz", 179, 1600000);
 City paris = new City("Paris", 105, 2300000);

The preceding code example is much lighter than the code required to create and confi gure the previ-
ous version of the City class. With the help of this constructor, you can create a City object and pro-
vide its necessary properties in a single line of code. If you don’t create a constructor, .NET creates
a default public constructor for you. If you create at least one constructor, .NET will not create the
default constructor. Because of this, you cannot use the following code to instantiate a City object.

City london = new City();

Using a constructor, you force the client code to provide the minimum number of properties for the
object being created.

As with normal methods, constructors can be overloaded. The following code provides three con-
structors for the City class.

 public City(string name, string country, decimal area, long population)
 {
 this.Name = name;
 this.Country = country;
 this.Area = area;
 this.Population = population;
 }
 public City(string name, decimal area, long population)
 {
 this.Name = name;
 this.Area = area;
 this.Population = population;
 }
 public City()
 {
 //default constructor
 }

Note that in the preceding code, when you have more than one constructor for any class (as with the
City class) you will have redundant code. In this case, you can use a technique called constructor
chaining. In this technique, you create a constructor that takes the maximum number of parameters
(called a master constructor), then you use that master constructor in all other constructors. The
following code demonstrates how this technique can work for the City class.

c03.indd 99c03.indd 99 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

100 ❘ CHAPTER 3 .NET PROGRAMMING FUNDAMENTALS, PART I

Using this technique results in more maintainable code and also simplifi es the procedure for class
defi nition.

 // master constructor
 public City(string name, string country, decimal area, long population)
 {
 this.Name = name;
 this.Country = country;
 this.Area = area;
 this.Population = population;
 }

 public City(string name, decimal area, long population)
 : this(name, "", area, population)
 {
 //there is no need for any code here
 //notice how "this" keyword is used in chaining constructors
 }

 public City(string name, decimal area)
 : this(name, "", area, 0)
 { }

Source code for the OOP solution can be found in the OOP.zip fi le in the downloads for this book
on Wrox.com.

SUMMARY

In this chapter, you explored the basics of C# programming necessary for successful ArcObjects
development. At this point, you have a good knowledge of implementing properties, methods, and
constructors for classes. Because ArcObjects is organized in a hierarchy of classes, you should be
familiar with object-oriented programming (OOP). You begin your object-oriented journey in this
chapter, and in the next chapter you focus on more advanced object-oriented concepts.

EXERCISES

 1. What is the best data type for scientifi c calculation in C#?

 2. What numeric data type provides the fastest possible performance?

 3. What is the purpose of XAML in WPF applications?

 4. What should you do to provide descriptive text for your methods?

You will fi nd the answers to these exercises in this book’s appendix.

c03.indd 100c03.indd 100 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Summary ❘ 101

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Properties Properties represent data that an object contains. You defi ne properties using

property blocks in C#. Property blocks have get and set parts, which provide

more control over how values are set or returned.

Methods In general, a method is a named group of one or more lines of code that are

grouped together for the purpose of reusability. In object-oriented program-

ming, a method is an action that an object can perform.

Method

overloading

You can overload methods by defi ning multiple methods that have the same

name with diff erent signatures. A method signature is a combination of the

name of the method and its number of parameters as well as the data type of

its parameters. If you change the number and data type of parameters for a

method, you create a diff erent method signature.

Events Events provide notifi cation that something has happened. For example, the

Button object fi res a Click event, which your code can react to using an event

handler. Events often convey information about the initializer of the event

through event arguments.

Enumeration Enumerations (or enum types in C#) associate a set of integer constants to

names that can be used in code.

c03.indd 101c03.indd 101 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

c03.indd 102c03.indd 102 25/02/13 11:27 AM25/02/13 11:27 AM

www.it-ebooks.info

http://www.it-ebooks.info/

.NET Programming
Fundamentals, Part II

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Object-oriented concepts

 ➤ Reference types vs. value types

 ➤ Structured exception handling

 ➤ Using collection objects to provide aggregation

 ➤ Reading and writing fi les using the System.IO namespace

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter04 folder and
individually named according to the names throughout the chapter.

This chapter covers aspects of basic programming in C# that Chapter 3 does not cover. You
will learn about reference and value types in the .NET Framework and explore their behavior
in various situations. Because working with fi les is a common programming task, this chapter
provides useful examples of working with fi les with a focus on text fi les. More specifi cally,
you read a text fi le into a manageable list of objects. Then you write the content of a list object
and create a Keyhole Markup Language (KML) fi le. At the end of this chapter, you import an
external component to create a KMZ (Keyhole Markup Language, Zipped) fi le.

4

c04.indd 103c04.indd 103 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://www.it-ebooks.info/

104 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

OVERVIEW OF OBJECT-ORIENTED

PROGRAMMING CONCEPTS

This section provides an overview of some fundamental concepts and terms common to all object-
oriented programming languages. Chapter 3 covered concepts such as classes, objects, properties,
and methods. In this section, you look at how those concepts work together to build object-oriented
principles. The main principles of object-oriented programming are abstraction, encapsulation,
polymorphism, and inheritance. This chapter starts with abstraction.

NOTE An in-depth explanation of all object-oriented concepts in C# is beyond
the scope of this book. This book only covers topics that are necessary for
beginning ArcObjects development. If you are interested in more in-depth
explanation of the object-oriented programming, good reference books include
Pro C# 5.0 and the .NET 4.5 Platform by Andrew Troelsen (Apress, 2012) and
Professional C# 4.0 and .NET 4 by Christian Nagel, Bill Evjen, Jay Glynn, Karli
Watson, and Morgan Skinner (Wrox, 2010). If you need a practical book that
describes concepts using real-world applications, Beginning C# Object-Oriented

Programming by Dan Clark (Apress, 2011) is for you.

Abstraction

When you interact with objects in the real world, you are often concerned with a subset of their
state and behavior. In other words, you make use of an abstracted version of the real object in your
code. This way, you ensure that you just deal with the task at hand — you don’t care about other
characteristics of the object that have nothing to do with the task. When constructing objects in
object-oriented applications, it is important to incorporate the concept of abstraction. For example,
if you were designing a spatial database you would construct a City class with geometry and
attributes such as a collection of points, name, and population. The cartographic aspects of the
City objects such as color and size of point symbol would be irrelevant information and should be
fi ltered out. On the other hand, if you were constructing a mapping application (which represents
geographic features to users) the cartographic aspects of City objects could be important and would
be included as the state or behavior of the City object.

Encapsulation

Encapsulation, or information hiding, is the term used for referring to the fact that no direct access
must be granted to the state of an object. Only the object is allowed to change its own data. If you
want to gain access to the data of any object, you have to interact with the object responsible for
that data. You have seen this in action when you wanted to access the Name property of a City
object. You use one instance of the City class to set or get the Name property of that instance. You
use properties to encapsulate data inside the objects. In addition, using methods, you defi ne which
operations or actions can be performed by objects of a class.

c04.indd 104c04.indd 104 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Object-Oriented Programming Concepts ❘ 105

In object-oriented programming, the encapsulation is mainly achieved by creating public methods
and properties within a class. The class is kind of a container or capsule that encapsulates the set of
methods (behaviors) and properties (states) to provide its indented functionalities to other classes. In
this regard, encapsulation also allows a class to change its internal implementation without harming
the other classes that use that class. In summary, the idea of encapsulation is to allow using a class
and at the same time hide how a class does its functionality.

Inheritance

Inheritance describes the process of creating a new class from an existing class by extending it. You
use inheritance in object-oriented programming to classify the objects in your applications based
on common characteristics and functionalities. This makes programming easier because it enables
you to combine general characteristics and functionalities into a base (parent) class and inherit
these characteristics and functionalities in the child classes. With inheritance, you can easily extend
the characteristics and functionality of the base class. Put simply, with inheritance, all the public
members of the base class are inherited by child classes. So inheritance can be considered a form of
code reuse. Figure 4-1 shows the inheritance concept.

FIGURE 4-1

As you can see in this hierarchy, all the properties and methods of the base class (LinearFeature)
are inherited to child classes. In this situation, you can say River is “of type” LinearFeature or
similarly Railway is “of type” LinearFeature. Similarly, you can say that River is a specialized
kind of LinearFeature. This kind of relationship between classes is called specialization.
Inheritance is the best way to implement “of type” (specialization) relationships. You see some other
kinds of relationships between classes throughout this book.

To create a derived class in C#, enter the name of the class, followed by a colon (:) and the name of
the base class. The following code snippet demonstrates how to create a Road class that derives from
a LinearFeature class:

c04.indd 105c04.indd 105 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

106 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

 public class LinearFeature
 {
 public string Name
 { get; set; }

 public double Length
 { get; set; }

 public void Draw()
 {
 //implementation for draw method goes here
 }
 }
 public class Road : LinearFeature
 {
 }

At this point, when you instantiate a Road object you get all the public members of
its base class. As you can see, there is also another set of methods which you don’t
create for either the Road class or LinearFeature class (see Figure 4-2). These
methods (such as the ToString() and GetType() methods) are provided by the
System.Object class, which is ultimately the base class of all the types in .NET.

Polymorphism

Polymorphism is a generic term that means “many shapes.” In object-oriented programming,
polymorphism means the capability to request the same operations to be performed by a wide range
of different types of objects. More precisely, it is the capability of different objects to respond to the
same request message in their own unique way of implementation. If you look at the class hierarchy
of LinearFeature, you will notice that the Draw() method is inherited by all three child classes.
You can assume that this method has been implemented to draw all the linear features in the same
way. But what if you want the specifi c implementation of this method in some child classes? In this
case, you can use method overriding. Method overriding allows a child class to override a specifi c
implementation of a method that is already provided by its base class. Figure 4-3 illustrates the
concept of method overriding.

FIGURE 4-2

FIGURE 4-3

c04.indd 106c04.indd 106 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Object-Oriented Programming Concepts ❘ 107

All the Road, Railway, and River instances are LinearFeature instances, so you can call the
Draw() method of all of them in the same fashion. In this situation, all Road instances will be drawn
using the implementation provided by the base class (LinearFeature). On the other hand, drawing
of the Railway and River instances is based on their specifi c implementations. The following code
snippet demonstrates how method overriding can be implemented in the previous hierarchy.

public class LinearFeature
 {
 public string Name
 { get; set; }

 public double Length
 { get; set; }

 public void Draw()
 {
 //implementation for General Drawing of linear features
 }
 }
 public class Road : LinearFeature
 {
 }

 public class River : LinearFeature
 {
 public override void Draw()
 {
 //implementation for Drawing of Rivers
 }
 }

 public class Railway : LinearFeature
 {
 public override void Draw()
 {
 //implementation for Drawing of Railways
 }

 public override string ToString()
 {
 return "Railway";
 }
 }

Note that the Railway class overrides the ToString() method of its ancestor base class
(System.Object) in the same way it overrides the Draw() method of its direct parent class.

Method overriding is one aspect of polymorphism. The other familiar facet of polymorphism is
method overloading, which is discussed in Chapter 3.

c04.indd 107c04.indd 107 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

108 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

REFERENCE TYPES AND VALUE TYPES

In Chapter 3, you learned that basic and intrinsic data types such as integers are actually objects
created from the Base Class Libraries (BCL) in the same way that you instantiate instances from
your classes. However, most intrinsic data types differ from classes in one important characteristic:
The intrinsic data types are value types, while any class (such as the City class you developed in
this chapter) is a reference type. This means that a variable for an intrinsic data type contains the
actual information you put in it (such as the number 30). On the other hand, class variables actually
store a reference that points to a location in memory where the full object is stored. In most cases,
.NET hides this fact. You won’t notice the difference in many programming tasks. However, in
three important cases, you will notice that object variables act a little differently than ordinary data
types: in assignment operations, in comparison operations, and when passing parameters between
methods. Because this topic is the source of many mistakes in programming, make sure you have
lots of active and unoccupied memory in your brain for concentration when reading this section.

Assignment Operations

When you assign a simple data variable to another simple data variable, the contents of the variable
are copied.

 int i, j;
 i = 1388;

 j = i;
 //content of j is 1388
 //there are two integers in memory

Reference types work in a totally different manner. Since in most cases reference types deal with
larger amounts of data and complex structures, copying the entire content of a reference type object
could degrade the performance of the application. For this reason, when you assign a reference type
using an assignment operator you copy the reference that points to the object, not the full object
content.

//create first instance
City BigApple = new City("New York");

//create second instance
City newYork = BigApple;
//at this point there is one instance of the City class
//with two different names
newYork.Name = "New York City";
//this statement change the Name property of the instance
//so if you check BigApple.Name you will get "New York City"

In the above example, two variables point to the same object instance, so changing the property of
one variable results in changing the property of the in memory object.

If you really want to copy the object content and not just its reference, you need to create a new
object and clone each piece of data of the source object. Some objects provide a Clone() method
for this purpose. In addition, you can implement the ICloneable interface for implementing your

c04.indd 108c04.indd 108 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Reference Types and Value Types ❘ 109

Clone method. (Interfaces are covered in Chapter 5.) The following code provides a simple method
for cloning City instances.

 public City Clone()
 {
 return new City(this.Name, this.Population, this.Area);
 }

When you use this method, you get two instances with the same state. Because you end up with two
distinct objects, modifying the property of one of them doesn’t cascade to the other object.

 //creating a first instance
 City BigApple = new City("New York");
 City NewYorkCity = BigApple.Clone();
 //at this point you have two instances with same properties
 //these two instances point to two different
 //memory addresses

 NewYorkCity.Name="Gotham";
 //the above code doesn't affect the BigApple.Name property

Comparison Operations

A similar difference between reference types and value types comes into play when you compare
two variables. In comparison operations, only the content of value type variables is checked. But
for reference type variables, references to the live objects are tested. Consider the following code
snippet:

 City BigApple = new City("New York");
 City NewYork = new City("New York");

 if (BigApple == NewYork)
 {
 //this is false, there are two distinct instances
 }

 City shiraz = new City("Shiraz");

 City cityOfRoses = shiraz;
 cityOfRoses.Name = "City of Flower and Nightingale";

 if (shiraz == cityOfRoses)
 {
 //this is true, there are two variables for a live object
 }

Passing Parameters between Method Calls

As you have seen in Chapter 3, defi ning a method is an easy task. In all the examples to this point
you used the default parameter passing behavior in C#. There are two keywords (called parameter
modifi ers) which you can use to change that default behavior. You generally use two parameter
passing behaviors, but there is no harm in knowing about all of them, starting with the default
behavior.

c04.indd 109c04.indd 109 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

110 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

The default fashion of passing a parameter in C# is passing by value. You use no keyword to
denote this behavior. Using this behavior, a copy of the content of the parameter is passed into the
called method. In other words, when the caller of the method passes parameters, the called method
receives a copy of the content of the variable. On the other hand, when the caller uses the passing
by reference behavior, its reference to the memory address is received by the called method. The
following code snippet demonstrates both approaches. The ref keyword defi nes the passing by
reference behavior.

private void changeNumberByValue(int x)
 {
 x *= 100;
 }

 private void changeNumberByRef(ref int x)
 {
 x *= 100;
 }

You have to use the ref keyword when you decide to use the second method. When passing by
reference, if you don’t include the ref keyword, you’ll get a compiler error.

 int i = 10;

 changeNumberByValue(i);
 // i equals 10 because only the content of i
 //is passed into the called method

 changeNumberByRef(ref i);
 //i equals 1000 because the reference to
 //the memory location
 // is copied and passed into the called method

This is a simple concept for integers and most intrinsic data types. But this concept can show its
complicated face when you use more complex data types such as arrays and classes. For example, if
you pass an array to a method, the called method can modify the input array whether you use the
pass by value (default behavior) or pass by reference (using the ref keyword) behavior. The reason
for this complicated behavior is simple: The entire array isn’t passed in the parameter — only the
reference to the array is transmitted. This behavior is much more effi cient for large and complex
objects and it saves having to copy a large block of memory, but it doesn’t always lead to the
behavior you expect.

C# also supports the use of the out keyword for returning multiple pieces of data from a single
method. Just like using the ref keyword, you have to provide the out keyword in the method
signature. You also have to adorn the parameter with this keyword when you want to use the
method. When you use this type of parameter, you can provide an uninitialized variable as an
output parameter.

 private int testOutKeyword(int number, out DateTime timeOfProcess)
 {
 timeOfProcess = DateTime.Now;
 return number * 100;
 }

c04.indd 110c04.indd 110 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Brief Explanation of All .NET Types ❘ 111

Using this method is represented in the following code snippet:

 int i = 1;
 DateTime t;
 i = testOutKeyword(i, out t);
 //at this point i is equal to 100
 //and t shows the time of execution

As you can see, the only action that the called method can do with the parameter decorated with the
out keyword is to set the output parameter.

BRIEF EXPLANATION OF ALL .NET TYPES

So far you have seen intrinsic data types such as integers and doubles. You have also learned how to
defi ne enumerations and how to encapsulate your desired functionality in classes. But there are also
other types in the .NET world. To be precise, types in .NET means the members of the following
set: enumerations, classes, structures, interfaces, and delegates. All these types can be categorized as
value types or reference types.

 ➤ An enumeration defi nes a set of named integers. Enumerations are extensively used in both
the .NET Framework and Esri’s ArcObjects. Because integers are value types, enumerations
are value types too.

 ➤ Classes are the most common type in the .NET Framework. Usually you create classes
to be used in your applications as a package of data and functionality. Strings and arrays
are examples of .NET classes (although as you have seen in Chapter 3, you can build your
classes easily). All classes are reference types.

 ➤ Structures, like classes, may include properties, methods, and even events, and they are
generally smaller and simpler than classes. Unlike classes, they are value types. The most
important difference between value types and reference types is the way that they are
managed in the memory. Structures also lack some of the more advanced features of classes,
such as inheritance and extension. All the intrinsic data types (numerical, char, boolean,
and date) except the string data type are structures.

 ➤ Delegates are the foundation for event handling in .NET. The delegate is a function pointer
that allows you to invoke a method indirectly. Delegates are useful when you wish to
provide a way for one class to forward a call to another class asynchronously. Also delegates
have intrinsic support for forwarding a request to multiple recipients (multicasting). You see
examples of using delegation for handling ArcObjects events in Chapter 14 of this book.
Delegates are reference types.

 ➤ Interfaces defi ne contracts or protocols to which a class or structure must adhere. An
interface is a named set of abstract members. The abstract members do not provide an
implementation. Interfaces are an advanced technique of object-oriented programming, and
they are useful when standardizing how objects interact. You see them in action throughout
this book. When you develop ArcObjects applications (such as ArcGIS Desktop Add-
Ins), you usually work with types inside ArcObjects via interfaces. You see the concept of
interfaces in Chapter 5.

c04.indd 111c04.indd 111 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

112 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

NOTE The String type is a full-featured class and not a simple value type. But
this data type overrides its equality (==) operator and assignment (=) operations.
This means equality and assignment operations work like those of value types.
Strings can contain various amounts of data, so this overriding makes them more
effi cient. Operator overriding is another facet of polymorphism.

NAMESPACES AND ASSEMBLIES

The .NET Framework consists of thousands of types which reside logically in various namespaces
and physically in assembly fi les. To make the .NET Framework more manageable, Microsoft has
organized it in a hierarchical structure. This hierarchical structure is arranged into what are referred
to as namespaces. Organizing the framework into namespaces greatly reduces the risks of naming
collisions. Organizing related functionality of the framework into namespaces also greatly enhances
its usability for developers.

All the .NET Framework types reside in the System namespace. The System namespace is further
subdivided by functionality. For example, the functionality required to work with fi les and folders is
contained in the System.IO namespace. Namespaces can contain several namespaces. For example,
the functionality used to compress streams of data is contained in the System.IO.Compression
namespace.

As mentioned in the fi rst paragraph of this section, the actual code for .NET types is stored in
assembly fi les that have.dll or .exe extensions. Assemblies and namespaces have a many-to-many
relationship. In other words, an assembly can contain multiple namespaces (such as system.data
.dll, which contains the System.Data.Sql and System.Data.SqlClient namespaces), and a
namespace can be contained by multiple assemblies (such as the System.IO namespace, which is
mainly contained by mscorelib.dll and system.dll).

To gain access to the types in the .NET Framework, you need to reference in your code the assembly
that contains the namespace. Then you can access types in the assembly by providing their fully
qualifi ed names. In order to add a reference to assemblies in Visual Studio, you can right-click on
the References folder in Solution Explorer and select the Add Reference item. Some assemblies are
referenced by default. For example, you can get the size of a fi le using the FileInfo class, which
resides in the System.IO namespace. The following code snippet demonstrates the use of a fully
qualifi ed name for the FileInfo class:

 private void lengthOfFile()
 {
 //since the System.IO resides in system.dll
 //and system.dll is referenced by default for all .NET projects
 //there is no need to add a reference to the system.dll file
 System.IO.FileInfo fileInfo = new System.IO.FileInfo(@"c:\testfile.txt");
 if (fileInfo.Exists)

c04.indd 112c04.indd 112 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Using Visual Studio ❘ 113

 {
 //do something like get its size
 long fileLength = fileInfo.Length;
 }
 }

You can import namespaces to avoid using the fully qualifi ed names of types. It is standard
programming practice to import the namespaces to make your code cleaner and more readable. You
import namespaces with the help of using directives. The using directives must reside in the very
beginning of the class fi le.

using System.IO;
…………..
…………..
.......

 private void lengthOfFile()
 {
 //since the System.IO resides in system.dll
 //and system.dll is referenced by default for all .NET projects
 //there is no need to add a reference to the system.dll file
 FileInfo fileInfo = new FileInfo(@"c:\testfile.txt");
 if (fileInfo.Exists)
 {
 //do something like get its size
 long fileLength = fileInfo.Length;
 }
 }

DEBUGGING USING VISUAL STUDIO

Visual Studio provides many features for making life easier for brave developers like you and me.
In addition to providing an easier coding experience, it provides required tools and utilities for
making us more productive. One of the brilliant facilities in Visual Studio is extensive support for
debugging. The following Try It Out shows you debugging in action.

TRY IT OUT Debugging Using Visual Studio (Simple CalculatorFirstLineOfDefense.zip)

 1. Open the Simple Calculator project that you developed in Chapter 3 by double-clicking on its
solution fi le (SimpleCalculator.sln).

 2. In the Solution Explorer window, click on MainWindow.xaml. Then press F7 to go to
MainWindow.xaml.cs. Right-click on the declaration line of the NumberClick event handler;
from the Breakpoint menu, choose Insert Breakpoint. A red dot will appear in the left margin to
indicate that a breakpoint has been set. Alternatively, you can click on the left margin of any line
of code to set a breakpoint on that line. (See Figure 4-4.)

c04.indd 113c04.indd 113 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

114 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

 3. Set a breakpoint on the btnAdd_click event handler as shown in Figure 4-5 using the approach
explained in the preceding step.

FIGURE 4-4

FIGURE 4-5

 4. Make sure that the Debug toolbar is visible. If it is not, use the Toolbars item of the View menu to
turn it on. Press F5 to start debugging. Try to press any numeric buttons. As you can see, program
execution will pause at the breakpoint. A yellow color indicates the next line of code that will be
executed.

 5. To step through the code one line at a time, click the Step Into button on the Debug toolbar (see
Figure 4-6). Alternatively, you can press F11 to step into code.

c04.indd 114c04.indd 114 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging Using Visual Studio ❘ 115

 6. Click the Step Out button to exit from the current method execution. Click the Division button
on the MainWindow. From the Debug menu, select Windows and then choose Locals. The Locals
window (shown in Figure 4-7) shows local variables of the current method. Press F11 to see the
changes in the Locals window. Also, as long as you are in debug mode you can see the content of
a variable by simply hovering your mouse on that variable.

FIGURE 4-6

FIGURE 4-7

 7. Input 0 as the denominator and then press the Equal button. Since you are in debug mode, the
code executes one line at a time. Press F11 several times to get to the line of code which performs
the division. The result of the division is “Infi nity.” The result is correct, but what if the user
wants to continue playing with your calculator? From this point forward, every calculation with
this simple calculator results in Infi nity or NaN (Not a Number). You can simply add a Clear
button to clear the contents of the lblResult label. Create a button, name it Clear, and enter code
to clear the contents of lblResult. The following is the event handler for the Clear button:

private void btnClear_Click(object sender, RoutedEventArgs e)
 {
 lblResult.Content = "";
 lblSummary.Content = "";
 }

 8. Test the Simple Calculator. With this little button, your simple calculator application behaves
more like a standard Windows calculator. But there is still a problem. If there is nothing in a label
control (such as when the application starts or when the user clicks the Clear button) and a user
presses one of the operator buttons, an exception is trapped by the integrated debugger of Visual
Studio as shown in Figure 4-8; at the same time, the application stops working.

c04.indd 115c04.indd 115 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

116 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

FIGURE 4-8

 9. To fi x this problem, comment out the fi rst line of code in the btnAdd_Click event handler and
enter the following code snippet:

////get the first number
//firstNum = double.Parse(lblResult.Content.ToString());
//using first line of defense
if (lblResult.Content == null || string.IsNullOrEmpty(lblResult.Content.ToString()))
{
 firstNum = 0.0;
}
else
{
 //get the first number
 firstNum = double.Parse(lblResult.Content.ToString());
}

How It Works

In this Try It Out, you saw some debugging facilities in Visual Studio. Debugging is the process of fi nding
exceptions and bugs in code and altering the code to gracefully remedy them. Sometimes with checking
values and providing logic in your code, bugs can be removed successfully. Developers are responsible for
developing error-free applications. Use extreme cases for fi nding bugs in your code. Or better, provide
your application to some testers to use and ask them to report any bugs they fi nd in your application.

Because exceptions are unpredictable in most cases, you have to handle them in a way that doesn’t
crash the application. The next section is devoted to exception handling in .NET.

c04.indd 116c04.indd 116 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Exception Handling ❘ 117

STRUCTURED EXCEPTION HANDLING

In general, three sources can prevent your application from working properly: bugs, user errors,
and exceptions. Bugs are errors made by the developer that can be fi xed by debugging. The divide
by zero problem which you saw in the preceding Try It Out was an example of a bug. Developers
typically use testing approaches to ensure that there are no bugs in their applications, but there is
almost always at least one bug that shows up just as an application is about to be released.

User errors are typically caused by an application’s end users. For example, an end user who enters a
negative number in a Print form to indicate the number of copies he wants could very well crash the
application. It is still the fault of the programmer, whose responsibility it is to anticipate all actions
by end users. A part of good programming is to consider extreme situations and use the various
debugging tools available in an integrated development environment such as Visual Studio.

Exceptions are typically things that are not expected to occur during normal processing. Trying
to read a fi le that doesn’t exist and attempting to connect to an offl ine database are two examples
of exceptions. Programmers have little control over these exceptional situations. But it is the
programmer’s responsibility to imagine all possible exceptions and handle them in code.

When creating code that could end up causing an exception, you should place it in an exception
handling block. Use an exception block to change the strategy for handling division by zero.
Comment out the if block, which you added in the last step of the preceding Try It Out, and enter
the following code snippet:

////using first line of defense
//if (lblResult.Content == null || string.IsNullOrEmpty
(lblResult.Content.ToString()))
//{
// firstNum = 0.0;
//}
//else
//{
// //get the first number
// firstNum = double.Parse(lblResult.Content.ToString());
//}

//using exception handling
try
{
 //getting the first number
 firstNum = double.Parse(lblResult.Content.ToString());
}
catch (Exception ex)
{
 //an exception has been detected
 // reporting exception to the user
 lblSummary.Content = ex.Message;
 firstNum = 0.0;
 Console.Beep();
}

c04.indd 117c04.indd 117 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

118 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

NOTE You can fi nd the source code for this version of the Simple Calculator
application in the StructuredExHandling.zip fi le in the downloads for this book
on Wrox.com.

Code placed inside the try block is protected code. If an exception occurs while the protected code
is executing, code processing is transferred to the catch block, where it is handled. The optional
finally block of the code can be added to the try block. The finally block is executed whether
an exception occurs or not. This allows you to perform some basic cleanup, such as closing a
database connection or releasing unmanaged resources.

Catching an exception makes application execution safe. If all you want to do is display a neat and
user-friendly warning to the end user, you don’t even need to add any code to the catch block other
than the code needed to display the user-friendly message. For a more advanced implementation,
you can show a user-friendly message to the end users and log the details of exceptions in a log fi le
or database. You can also create a new exception object with additional information and throw
that. You throw exceptions using the throw keyword. All you need to do is create a new exception
instance and throw it. The following code snippet demonstrates throwing an exception:

 void CallerMethod()
 {
 try
 {
 int result = Divide(0, 0);
 }
 catch (Exception ex)
 {
 //reporting message to end users
 string message = ex.Message;
MessageBox.Show(message);
 }
 }

int Divide(int i, int j)
 {
 try
 {
 return i / j;
 }
 catch
 {
 Exception myEx = new Exception("divide by zero results in
 infinity");
 throw myEx;
 }
 }

In the preceding code, the caller method receives a newly created exception object which contains
the user-friendly message.

You can use the catch block to catch all exceptions that may occur in the try block, or you can use
it to perform different actions for different exceptions based on the type of exception. The following

c04.indd 118c04.indd 118 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Structured Exception Handling ❘ 119

code demonstrates fi ltering exceptions based on the different exceptions that could occur when
trying to read a text fi le:

public string readATextFile()
 {
 string data = "";
 try
 {
 data = File.ReadAllText(@"c:\test.txt");
 return data;
 }
 catch (DirectoryNotFoundException ex)
 {
 throw new Exception("Directory does not exist");
 }
 catch (FileNotFoundException ex)
 {
 throw new Exception("File Not Found");
 }
 catch (Exception ex)
 {
 //executed when none of the above exceptions occurs
 throw new Exception("Something is wrong!");
 }
 }

NOTE To execute the preceding code, you need to import the System.IO
namespace. To do so, enter the following line of code at the very beginning of
your code fi le:

using System.IO;

When you catch an exception in your code, it won’t be directly an instance of the generic
System.Exception class. Instead, it will be a direct instance of many specifi c types of exceptions.
In other words, System.Exception is the
ultimate parent class of all exceptions in the
.NET Framework. Visual Studio provides a
useful tool to browse through the exceptions
in the .NET class library. Simply choose the
Exceptions item from the Debug menu. The
Exceptions dialog box will appear. Expand
the Common Language Runtime Exceptions
group, which shows a hierarchical tree of .NET
exceptions arranged by namespace, and then
expand the System.IO group, as shown in
Figure 4-9.

You can also use the Object Browser window to explore any type in Visual Studio. Just select Object
Browser from the View menu to display it and enter the name of a type to display its members, base
class, and other useful information, as shown in Figure 4-10.

FIGURE 4-9

c04.indd 119c04.indd 119 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

120 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

CASTING OBJECTS

As you know, all object variables point to the place in memory where the actual object exists. All
objects can be converted with the same syntax that is used for intrinsic data types. This process
is called casting. When you perform casting, you don’t actually change anything about an object.
In fact, it remains the exact same object in the same location in memory. What you change is the
variable that points to the object. In other words, the way your code sees the object is changed.

The way your code sees an object specifi es what you can do with that object. An object variable can
be cast into one of three things: itself, an interface that it supports, or a direct or indirect base class.
You have already used casting in the Simple Calculator solution:

private void NumberClick(object sender, RoutedEventArgs e)
 {
 string enteredNum = "";
 Button clickedButton = (Button)sender;
 enteredNum = clickedButton.Content.ToString();
 lblResult.Content += enteredNum;
 }

In this code, you cast the sender object variable (which you know is a Button) to the Button class.
When you perform this casting, you don’t lose any information. There is still one object in memory
with two variables pointing to it. Here the ClickedButton variable really is a Button instance.
However, the sender or ClickedButton variables specify what properties and methods should be
available to the outside world. This means the following code causes a compiler error. Even though
sender actually points to a Button and even though the Button has a Content property, you can’t
access the Content property through the sender object.

FIGURE 4-10

c04.indd 120c04.indd 120 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregation Using Collections ❘ 121

 enteredNum = sender.Content.ToString();

You can validate the cast process using the is keyword. In other words, you check whether or not
the object variable is of a specifi c type via the is keyword.

 if (sender is Button)
 {
 //here is a safe place to cast
 Button clickedButton = (Button)sender;
 enteredNum = clickedButton.Content.ToString();
 lblResult.Content += enteredNum;
 }

You can also use the as keyword to perform the casting. Here the only difference is that the as
keyword returns a null reference if it fails to cast the object to a specifi ed type. In other words,
when you use the as keyword you are able to fi nd out compatibility between the object variable and
a type by checking against a null return value.

 Button clickedButton = sender as Button;

 //check to see if the cast was successful or not
 if (clickedButton != null)
 {
 enteredNum = clickedButton.Content.ToString();
 lblResult.Content += enteredNum;
 }

You learn about interfaces in Chapter 5, but all the casting operations that have been explained in
this section can be applied to them as well.

AGGREGATION USING COLLECTIONS

In the “Inheritance” section earlier in this chapter, you learned that inheritance is used for modeling
specialization relationships between types. Another more common relationship between types is
containment or aggregation. In aggregation, an instance of the containing type contains one or more
instances of the contained types. You see many examples of this type of relationship in real life. A
state contains many counties, a county contains many cities, a car contains three or four wheels
and one or more engines (hybrid cars usually contain two engines), and so forth. All you need to
do in order to defi ne an aggregation relationship is create an appropriate property in the containing
type to indicate a set of contained type instances. The following code snippet demonstrates a simple
approach to represent the relationship between City and County classes:

public class County
 {
 public string Name
 { get; set; }

 //array of City in County class
 public City[] Cities;
 }

c04.indd 121c04.indd 121 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

122 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

The .NET Framework has some special classes that have no purpose other than to group various
objects and provide them as a collection. Because C# arrays do not support re-dimensioning, using
these collection classes, aggregation relationships can be modeled effi ciently. In addition, some
of these collection classes provide sorting and name-based retrieval for containing objects. This
section confi nes the discussion about collections to two widely used types: the ArrayList class and
generics.

The ArrayList

C# arrays do not support re-dimensioning. This means that after you create an array, you can’t
resize it to provide additional elements. Instead, you have to create a new array with the new size
and copy values from the old array to the new, which would be a tedious and ineffi cient process.
However, if you need a dynamic arraylike list, you can use one of the collection classes provided to
all .NET languages through the System.Collections namespace.

When you work with collections, you often do not know the number of items it contains until
runtime. This is where the ArrayList class comes into play. The capacity of an ArrayList
automatically grows as required, with memory reallocation and copying of elements achieved
dynamically. The ArrayList class also provides some methods and properties for working with
its elements that the Array class does not provide. In order to use the ArrayList class, you have
to import the System.Collections namespace. The following code snippet demonstrates the
ArrayList class:

using System.Collections;

namespace OOP
{
 class test
 {
 void usingArrayList()
 {
 ArrayList myArrayList = new ArrayList();
 //ArrayList contains objects (everything in an ArrayList is
 //considered to be an object)
 //adding a string to ArrayList
 myArrayList.Add("Pouria");
 //adding a City object to ArrayList
 myArrayList.Add(new City("London"));
 //adding a DateTime object
 myArrayList.Add(DateTime.Now);

 //you have to cast the object inside the ArrayList to a specific type
 City London = myArrayList[1] as City;
 }
 }

ArrayList objects are not strongly typed, meaning that you can add any data type to a
single ArrayList object. The fl exible nature of the ArrayList class causes many issues when you
want to retrieve data from an ArrayList object. When data is added to the ArrayList, it is cast to
a generic System.Object type. In order to use items inside an ArrayList, you have to cast elements
inside the ArrayList to their proper data types. In the preceding code snippet, you used the as
keyword to do the cast operation.

c04.indd 122c04.indd 122 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Reading and Writing Files ❘ 123

An ArrayList can have only one dimension. In addition, an array of a specifi c type offers better
performance than an ArrayList object. But it is easier to work with an ArrayList than an array.
ArrayList objects also provide re-dimensioning and memory reallocation effi ciently. This is why
Microsoft provides the ArrayList class in the .NET Framework from its beginning. Developers
used to work happily with the ArrayList and other classes in System.Collections namespaces.

However, Microsoft provides a new enhancement for collections in .NET 2.0. With this new
enhancement, a brand new namespace was added to collections and provides strongly typed
collections to the arsenal of developers. This new enhancement is called generics and use of it is
highly recommended in the ever-changing world of .NET.

Generics

The .NET Framework supports generics to overcome the performance and maintenance issues
associated with the weakly typed collections. Generics let you defi ne a class without specifying its
type. The type is specifi ed when the class is instantiated. Using a generic collection provides the
advantages of type safety and the performance of a strongly typed collection while also providing
all the benefi ts of weakly typed collections. The following code shows the List class, one of the
most widely used generic collections, in action:

 //create a list for storing City objects
 List<City> cities = new List<City>();
 //adding some City objects
 cities.Add(new City("London"));
 cities.Add(new City("Paris"));
 cities.Add(new City("Munich"));
 //following code causes a compile error
 //cities.Add("city of flower and nightingale");

The List class is easy to use. For example, you can use a foreach block to iterate through the
individual members in the List object:

 foreach (City cityObject in cities)
 {
 // do something with each City object
 }

You see the List class in a real-world application in the next Try It Out. Remember that in addition
to the List class, there are several other classes in the System.Collections.Generic namespace.
Because the List class allows you to resize its contents dynamically (like ArrayList but far more
effi cient), it is the most frequently used type in the System.Collections.Generic namespace.

READING AND WRITING FILES

Files have always been an important aspect of programming, and it is necessary to work with
multiple fi les in most programming tasks. In the .NET Framework, the System.IO namespace is
devoted to fi le-based operations such as reading, writing, copying, and deleting, just to name a
few. Like any other namespace, System.IO defi nes several types to work with fi les, folders, and
also memory-based input and output. But in this section, you only explore the classes for accessing
(reading and writing) fi les. Most types in the System.IO namespace are easy to understand, so don’t
be afraid to explore this useful namespace.

c04.indd 123c04.indd 123 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

124 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

When you want to access a fi le, it is convenient to treat it as either a text fi le or a binary fi le.
Text fi les contain plain text characters. They are usually read line by line or, alternatively, read
completely, and then the result is put into a string variable. On the other hand, binary fi les do not
contain plain text. Instead they contain text that is not human readable. Binary fi les must be read
according to the structure used to write them. For example, a simple bitmap image fi le (a binary fi le)
must be read one byte at a time to get the red, green, or blue value of a pixel. Then you combine the
red, green, and blue (RGB) values to reconstruct the true color of that pixel. In short, you have to
know the structure and organization of binary fi les before you can access them.

There are several ways to access fi les in .NET. The most widely accepted approach is by using
Stream objects. The Stream object represents a sequence of bytes that can be accessed from local
fi les, the memory of a local machine, the shared memory of a network, and so forth.

.NET concentrates on Stream objects rather than the source or destination for the data. This
means you can write binary data to any type of stream (such as FileStream, MemoryStream, and
NetworkStream), whether it represents a fi le or some other type of storage location, using the
same code. In addition, writing to a binary fi le is almost the same as writing to a text fi le.
The following code demonstrates creation of a FileStream object in its simplest form for
creating a new fi le:

FileStream fs = new FileStream(@"c:\test.dat", FileMode.Create);

The FileMode enumeration contains other members to request (to the operating system) the required
process on the specifi ed fi le. Table 4-1 explains all the members of the FileMode enumeration.

TABLE 4-1: FileMode Enumeration Members

MEMBER MEANING IN LIFE

Append Opens the fi le in write mode and appends all the data to the existing

contents of the fi le. If the fi le doesn’t exist, it creates a new fi le.

Create Creates a new fi le in write mode and overwrites the existing fi le if it fi nds

another fi le with the same name in the specifi ed address.

CreateNew Creates a new fi le in write mode, and if it fi nds an existing fi le it throws an

exception.

Open Opens a fi le in read mode. It throws an exception if the fi le doesn’t exist.

OpenOrCreate Opens an existing fi le or creates a new fi le in both read and write modes.

Truncate Opens a fi le in write mode and resets its size to zero bytes.

Once you access a fi le you can use the StreamReader and StreamWriter classes to read or write
data on top of a channel that is provided by the FileStream object. The following code snippet
demonstrates the Write() method of the StreamWriter class:

 //for creating new files
 FileStream fs = new FileStream(@"c:\test.dat", FileMode.Create);
 StreamWriter sw = new StreamWriter(fs);
 sw.WriteLine("this is content of a test.dat file");

c04.indd 124c04.indd 124 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Reading and Writing Files ❘ 125

 //release the file resource
 sw.Close();
 fs.Close();

It is always good programming practice to use the exception handling mechanism when you work
with fi les. In the next Try It Out, you create a simple text fi le.

TRY IT OUT Creating a Text File (CreatingTxt.zip)

 1. Create a new project in Visual Studio, select the WPF application template, and name it KML.

 2. Right-click your project in the Solution Explorer window and select Class from the Add submenu.
In the Add New Item window, name the class fi le City.cs and press Add. In the City class,
provide members to store data about the name, population, area, and x and y of each instance.
Your code should be similar to the following code snippet:

namespace KML
{
 class City
 {
 //properties
 public string Name
 { get; set; }

 public long Population
 { get; set; }

 public decimal Area
 { get; set; }

 public decimal X
 { get; set; }

 public decimal Y
 { get; set; }
 }
}

 3. Add required constructors for the City class. Use the constructor chaining technique you learned
about in Chapter 3.

 //constructors
 //master constructor
 public City(string name, long population, decimal area, decimal x, decimal y)
 {
 this.Name = name;
 this.Population = population;
 this.Area = area;
 this.X = x;
 this.Y = y;
 }
 //second constructor
 public City(string name, long population, decimal x, decimal y)
 : this(name, population, 0, x, y) { }

c04.indd 125c04.indd 125 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

126 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

 //third constructor
 public City(string name, decimal x, decimal y)
 : this(name, 0, 0, x, y) { }
 //fourth (empty) constructor
 public City() : this("", 0, 0) { }

 4. Override the ToString() method to report the name, population, and area of an instance. Add
the following code snippet in the City.cs class fi le:

 public override string ToString()
 {
 //
 return string.Format("{0}, {1}, {2}, {3}, {4}", this.Name, this.
 Population, this.Area, this.X, this.Y);
 }

 5. Select the MainWindow.xaml fi le in the Solution Explorer and press F7 to go to the code window.
Import the System.IO namespace in the MainWindow.xaml.cs fi le and then add a button to the
MainWindow of your application. Change its name to btnWriteTextFile and its content to Write

Text File, as shown in Figure 4-11.

FIGURE 4-11

 6. Double-click the button to create the skeleton code for the click event handler. Add code to
create some instances of the City class and populate a list of City objects.

 List<City> cities = new List<City>();
 cities.Add(new City("New York", 16500000, 1210, -74.0999m, 40.7500m));
 cities.Add(new City("Tokyo", 23650000, 2187, 139.8092m, 35.6830m));
 cities.Add(new City("Berlin", 5100000, 892, 13.3276m, 52.5163M));
 cities.Add(new City("Paris", 10000000, 105, 2.4328M, 48.8815m));

c04.indd 126c04.indd 126 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Reading and Writing Files ❘ 127

 7. Add the following code snippet to the preceding code to write the content of the list to a text fi le
using the FileStream and StreamWriter classes.

//writing text file
 string fileAddress = @"C:\test.txt";
 FileStream fs = new FileStream(fileAddress, FileMode.Create);
 StreamWriter sw = new StreamWriter(fs);
 try
 {
 foreach (City ct in cities)
 {
 sw.WriteLine(ct.ToString());
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, ex.Source);
 }
 finally
 {
 //cleanup
 sw.Close();
 fs.Close();
 }

 8. At this point, the event handler for btnWriteTextFile should resemble the following code:

private void btnWriteTextFile_Click(object sender, RoutedEventArgs e)
 {
 List<City> cities = new List<City>();
 cities.Add(new City("New York", 16500000, 1210, -74.0999m, 40.7500m));
 cities.Add(new City("Tokyo", 23650000, 2187, 139.8092m, 35.6830m));
 cities.Add(new City("Berlin", 5100000, 892, 13.3276m, 52.5163M));
 cities.Add(new City("Paris", 10000000, 105, 2.4328M, 48.8815m));

 //writing text file
 string fileAddress = @"C:\test.txt";
 FileStream fs = new FileStream(fileAddress, FileMode.Create);
 StreamWriter sw = new StreamWriter(fs);
 try
 {
 foreach (City ct in cities)
 {
 sw.WriteLine(ct.ToString());
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, ex.Source);
 }
 finally
 {
 //cleanup
 sw.Close();
 fs.Close();
 }
 }

c04.indd 127c04.indd 127 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

128 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

 9. Run the application by pressing F5. A fi le
named test.txt should be created and
when you open it in Notepad you should
see Figure 4-12.

How It Works

In this Try It Out, you created a Comma
Separated Values (CSV) fi le even though it has
a .txt extension. You used the list of City objects to store your data in memory and then you utilized
two classes of the System.IO namespace (FileStream and StreamWriter) to write the list of City
objects to a text fi le. It is always a good idea to use defensive code strategies. One of the most widely
accepted defensive code strategies in the .NET world is to use exception handling whenever your code
deals with unmanaged resources like fi les and databases. Also, you used the Close() method to release
resources that were occupied during the process of writing data to fi les. Again, you must always per-
form this kind of cleanup task whenever you are working with unmanaged resources like fi les and data-
bases. This way your limited resources can be allocated to other users in multi-user environments.

For reading a fi le, you can use the StreamReader class in the same way in which you used the
StreamWriter class. The following code reads the content of a text fi le completely into a string
variable:

 //for reading an existing file
 FileStream fs = new FileStream(@"c:\test.dat", FileMode.Open);
 StreamReader sr = new StreamReader(fs);
 //reading content of file as a whole
 string data = sr.ReadToEnd();
 //cleanup
 sr.Close();
 fs.Close();

You can also use the ReadLine() method of the StreamReader class to read the content of a text
fi le line by line. The mentioned method returns a null reference when there is no more data in
the fi le.

 FileStream fs = new FileStream(@"c:\test.dat", FileMode.Open);
 StreamReader sr = new StreamReader(fs);
 string oneLineOfData = sr.ReadLine();
 while (oneLineOfData != null)
 {
 //code to process a line of data goes here
 oneLineOfData = sr.ReadLine();
 }
 sr.Close();
 fs.Close();

In the next Try It Out, you read the text fi le you created in the preceding Try It Out. Then you
populate a List of City objects and use some simple magic to create a KML fi le.

FIGURE 4-12

c04.indd 128c04.indd 128 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Reading and Writing Files ❘ 129

TRY IT OUT Creating a KML File (KML.zip)

 1. Open your KML project if it is not already open. Add another button to the MainWindow of your
application. Change the name of the new button to btnCreateKMLFile and the content of it to
Convert txt to KML, as illustrated in Figure 4-13.

FIGURE 4-13

 2. Double-click the button to create a click event handler. Add the following code to the click
event handler of the newly added button:

//Read the text file
 //and populate the list of City objects
 FileStream fs = new FileStream(@"c:\test.txt", FileMode.Open);
 StreamReader sr = new StreamReader(fs);

 List<City> cities = new List<City>();
 try
 {
 string line = sr.ReadLine();

 while (line != null)
 {
 string[] content = line.Split(",".ToCharArray());
 City ct = new City();
 ct.Name = content[0];
 ct.Population = long.Parse(content[1]);
 ct.Area = decimal.Parse(content[2]);
 ct.X = decimal.Parse(content[3]);

c04.indd 129c04.indd 129 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

130 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

 ct.Y = decimal.Parse(content[4]);

 cities.Add(ct);
 line = sr.ReadLine();
 }
 }
 catch (Exception ex)
 { MessageBox.Show(ex.Message); }
 finally
 {
 sr.Close();
 fs.Close();
 }

 3. At this point, you have populated the list of City objects. As you can see by looking at the
structure of a simple KML fi le (discussed in Chapter 1), all you need to create a KML fi le is to
enclose City objects with some XML tags. A simple KML fi le has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <name>Kish Island</name>
 <Placemark>
 <name>Kish Island</name>
 <description>Kish island in Beautiful Persian Gulf</description>
 <Point>
 <coordinates>53.96575016905689,26.50243592677882,0</coordinates>
 </Point>
 </Placemark>
 </Document>
</kml>

 4. To make life more interesting you are going to use some HTML tags to make up the description
of City objects inside the KML fi le. Enter the following code into the City class:

 private string CreateKMLDescription()
 {
 string description="";
 description += string.Format("<i>Name: </i>{0}
",this.Name);
 description += string.Format("<i>Population: </i>{0}
",
 this.Population);
 description += string.Format("<i>Area: </i>{0} Square
 Kilometre",this.Area);

 return description;
 }

 5. Add another method in the City class to create the rest of the tags for each City object:

 public string WriteKMLFragment()
 {
 string kmlFragment = "";
 kmlFragment += string.Format("<Placemark id='{0}'>", this.Name);

c04.indd 130c04.indd 130 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.opengis.net/kml/2.2
http://www.it-ebooks.info/

Reading and Writing Files ❘ 131

 kmlFragment += string.Format("<name>The City of {0}</name>", this.Name);
 kmlFragment += string.Format("<description>{0}</description>", this.
 CreateKMLDescription());

 kmlFragment += string.Format("<Point><coordinates>{0},{1})
 </coordinates></Point>", this.X, this.Y);
 kmlFragment += string.Format("</Placemark>");

 return kmlFragment;
 }

 6. This is the time for creating a KML fi le from the list of City objects. Append the following code
to the click event handler of btnCreateKMLFile:

 //create kml
 StringBuilder sb = new StringBuilder();
 //append the kml prologue
 sb.Append(@"<?xml version='1.0' encoding='UTF-8'?><kml xmlns=
 'http://www.opengis.net/kml/2.2'><Document>");

 foreach (City ct in cities)
 {
 sb.Append(ct.WriteKMLFragment());
 }

 //append the epilog of the kml file
 sb.Append(@"</Document></kml>");
 fs = new FileStream(@"c:\test.kml", FileMode.Create);
 StreamWriter sw = new StreamWriter(fs);

 try
 {
 sw.Write(sb.ToString());
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 finally
 {
 sw.Close();
 fs.Close();
 }

 7. Run your application. A KML fi le should be created. You can open this fi le using Google Earth or
ArcGIS Explorer. Figure 4-14 shows the fi le in Google Earth.

c04.indd 131c04.indd 131 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.opengis.net/kml/2.2
http://www.it-ebooks.info/

132 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

How It Works

You have seen how to create a simple KML fi le out of a list of objects. In addition, you used the String
Builder class to hold the contents of a text fi le. You could use a String object instead of StringBuilder,
but you have to know that String objects are immutable. This means once a String object is assigned
a value (initialized) its value cannot be changed. As a matter of fact, when you reassign a string variable,
behind the scenes the .NET Framework creates a new String object and assigns that object to that
variable.

The String class is the perfect choice for representing basic character data, but when you build a
text fi le it is better to use the StringBuilder class. The StringBuilder class (in the System.Text
namespace) is the perfect choice when you make heavy use of text data. What makes this perfect is the
capability to directly modify the internal character data. When you are using one of the members of the
StringBuilder class, you don’t obtain a copy of the contents of it in a modifi ed format.

In addition to using FileStream, .NET includes functionality for reading and writing simple text
and binary fi les using the File class. This functionality enables you to read and write a fi le with a
single line of code. Here is an example:

 string[] linesOfData = {
 "New York, 16500000, 1210, -74.0999, 40.7500",
 "Tokyo, 23650000, 2187, 139.8092, 35.6830",

FIGURE 4-14

c04.indd 132c04.indd 132 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Reading and Writing Files ❘ 133

 "Berlin, 5100000, 892, 13.3276, 52.5163" };

 //writing all lines in one shot
 File.WriteAllLines(@"c:\test.txt",linesOfData);

 //reading the text file line by line
 string[] contents = File.ReadAllLines(@"c:\test.txt");

These methods of accessing fi les (and other methods provided by the File class) are effi cient for
small amounts of data. In the case of writing a fi le, behind the scenes the .NET Framework reads all
the data into memory and then fl ushes it to the specifi ed fi le. A similar process happens when you
try to read the fi le using these methods. The entire content is loaded into memory at once and put
into a variable. It is recommended that when you deal with fi les and other unmanaged resources like
databases you read one piece of data at a time and process the read data bit by bit.

You created a KML fi le in the preceding Try It Out. You can also create a KMZ fi le, which is a
zipped version of a KML fi le. Unfortunately, there is no straightforward and easy approach to create
.zip fi les using .NET 4.0. Fortunately, one of the new changes in .NET 4.5 is the vast improvement
in the System.IO.Compression namespace. Using the types in that namespace in a very simple
manner, you can perform zip and unzip actions (archiving and unarchiving). But as long as you are
using Visual Studio 2010 and .NET 4.0 you cannot make use of them without installing .NET 4.5.
So you have to resort to third-party components. Several free and commercial components can be
used for performing packaging related tasks. One of the simplest is the free DotNetZip library. You
can download it from http://dotnetzip.codeplex.com/. DotNetZip is managed code written
completely in C# and can be used in any type of .NET application. The last Try It Out in this
chapter shows how to create a KMZ fi le.

PACKAGING IN .NET 3.0 AND ABOVE

.NET 3.0 introduced the System.IO.Packaging namespace (in the WindowsBase

.dll assembly), which can be used to create zip archives. The ZipPackage class
in this namespace has the required members to perform zip-related actions. But
because the ZipPackage class is not straightforward to work with, most develop-
ers resort to other solutions. This is changed in .NET 4.5, but this book uses Visual
Studio 2010 throughout, so NET 4.5 features are not covered.

TRY IT OUT Creating a KMZ File (KMZ.zip)

 1. Open the KML project you created in the preceding Try It Out. Go to http://dotnetzip
.codeplex.com and download the DotNetZip library. Unpack the library to a convenient
location on your machine (such as C:\ZipLibrary).

2. To use a library, you have to add a reference to the assembly contained in the DotNetZip library.
In Solution Explorer, right-click on the References folder and choose Add Reference. The Add

c04.indd 133c04.indd 133 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://dotnetzip.codeplex.com/
http://dotnetzip.codeplex.com
http://dotnetzip.codeplex.com
http://www.it-ebooks.info/

134 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

Reference window appears. Select the Browse
tab and go to the extraction folder (where you
extracted the .zip fi le). Find the zip-v1.9 folder
as shown in Figure 4-15 and double-click
it. You will see two other folders: Double-
click the Release folder, which contains the
assembly. Select the Ionic.Zip.dll fi le and
then click the OK button to add the assembly
to your project.

 3. Notice that a reference (Ionic.Zip) is added
at the top of your references in the Solution
Explorer window. Add a button to the
MainWindow of your application. As always,
change its name and content to something
meaningful (such as btnKMZ and Convert

KML to KMZ, respectively).

 4. Add the following code to create a .zip archive from the KML fi le in the click event handler of
the newly added button.

 private void btnKMZ_Click(object sender, RoutedEventArgs e)
 {
 Ionic.Zip.ZipFile zf = new Ionic.Zip.ZipFile();
 try
 {
 //you created the kml file in the preceding step
 //you can create the kmz file in a single step as well
 zf.AddFile(@"C:\test.kml");
 zf.Save(@"C:\test.kmz");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, ex.Source);
 }
 finally
 {
 //cleanup code
 zf.Dispose();
 }
 }

 5. Run your code by pressing F5 or the Start Debugging button in Visual Studio. Click the newly
added button. A KMZ fi le is created that can be viewed in most Earth viewer applications such as
Google Earth, ArcGIS Explorer, and NASA’s World Wind.

How It Works

In this Try It Out, you saw the process of adding an external assembly fi le. You also saw how easy and
intuitive it is to work with the DotNetZip library. You write just three lines of code (exception handling
and declaration code excluded) to create a .zip fi le. The most important line of code in those three

FIGURE 4-15

c04.indd 134c04.indd 134 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 135

lines is the Dispose() method. You have to call this method on every object to release memory that is
occupied by the unmanaged resources within your code. The proper location for calling this method
is the finally block. Note that many types provide a Close() method (such as the FileStream class)
to perform the same action. So keep in mind that in spite of the fact that .NET provides automatic
 garbage collection, you always have to provide cleanup code for unmanaged resources.

NOTE Codeplex (http://www.codeplex.com) is Microsoft’s website dedicated
to free and open source projects. You can create new innovative projects to
share with the world, collaborate with others on existing projects, and download
open source software from this site. Spend some time on this site and you will
fi nd some useful pieces of open source software.

SUMMARY

This chapter is the second and last chapter on pure .NET programming. In this chapter, you have
completed the big picture of object-oriented programming in C# by exploring object-oriented
principles and techniques. You reviewed the types in .NET and saw how reference types differ from
value types. Also you examined debugging in Visual Studio and the use of structured exception
handling in .NET. Then you delved into the System.IO namespace and accessing fi les using the
types inside that namespace. Finally, through creating a KMZ fi le (and making use of an external
tiny component), you were ready to make use of external components that have revolutionized the
GIS world since its beginning. I mean ArcObjects. The remaining chapters of this book focus on
ArcObjects. In Chapter 5, you see what ArcObjects is and how you can use ArcObjects types
in .NET.

EXERCISES

 1. Method overloading and method overriding are part of which object-oriented principle?

 2. Is the string type a reference type or value type? What is the result of an assignment operator

on it?

 3. Which part of the exception handling block is optional? Which part is suitable for cleanup code?

 4. It is recommended not to use the ArrayList class in all .NET code since .NET 2.0. What is wrong

with the ArrayList class?

You will fi nd the answers to these exercises in this book’s appendix.

c04.indd 135c04.indd 135 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.codeplex.com
http://www.it-ebooks.info/

136 ❘ CHAPTER 4 .NET PROGRAMMING FUNDAMENTALS, PART II

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Main object-oriented

principles

Abstraction, encapsulation, polymorphism, and inheritance

Method overriding In general, method overriding allows a child class to override a specifi c

implementation of a method that is already provided by its parent

(super) class.

Diff erences between

reference types and

value types

Diff erences between reference types and value types lie in three

important cases: in assignment operations, in comparison operations,

and when passing parameters between methods. Also they are

managed in two diff erent places in memory by CLR.

.NET types Classes, enumerations, structures, interfaces, and delegates compose

what is called .NET types.

Namespace and

assembly

All .NET types are logically organized in namespaces and all of

them reside physically in assemblies (such as .dll fi les). There is

a many-to-many relationship between namespaces and assemblies.

Casting objects in C# You can cast objects in C# using an explicit casting operator or as

keyword.

c04.indd 136c04.indd 136 25/02/13 11:30 AM25/02/13 11:30 AM

www.it-ebooks.info

http://www.it-ebooks.info/

PART III

ArcObjects Programming

 � CHAPTER 5: Understanding ArcObjects Object Model Diagrams

 � CHAPTER 6: Accessing Maps and Layers

 � CHAPTER 7: Working with Tables and FeatureClasses

 � CHAPTER 8: Subsets of Records

 � CHAPTER 9: Constructing and Using the Geometry of Features

 � CHAPTER 10: Rendering Geospatial Data and Using Hyperlinks and

MapTips

 � CHAPTER 11: Labeling, Exporting ActiveView, and Working With

Elements

 � CHAPTER 12: Geoprocessing with Tools and Models

 � CHAPTER 13: Feature Data Management

 � CHAPTER 14: Advanced Topics in ArcObjects Programming and

Deployment

c05.indd 137c05.indd 137 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c05.indd 138c05.indd 138 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding ArcObjects
Object Model Diagrams

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Interface-based programming

 ➤ Types of classes in ArcObjects

 ➤ Diff erent kinds of relationships in ArcObjects

 ➤ Navigating a relationship

 ➤ Working with tools such as Object Browser and ILSpy

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter05 folder
and individually named according to the names throughout the chapter.

ArcObjects is a set of reusable components developed using Microsoft’s Component Object
Model (COM) specifi cation. This specifi cation is one of the rare successful standards for inter-
face-based programming. Put simply, in interface-based programming, you don’t use objects
directly; rather, you access the members of classes through their implemented interfaces. So
in ArcObjects development, you have to know the details of working with interfaces. In this
chapter, you fi rst scratch the surface of interface-based programming in the .NET Framework.
Then you delve into the topic of interpreting ArcObjects object model diagrams, which you
often use as a source of planning for development.

5

c05.indd 139c05.indd 139 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

140 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

WHAT IS ARCOBJECTS?

ArcObjects is a library of COM components that build up the foundation of the ArcGIS plat-
form. ArcObjects is written mostly in C++ programming language. All the ArcGIS for Desktop
applications are based on ArcObjects. In other words, when you are working with ArcMap or
ArcCatalog, behind the scenes you are making use of ArcObjects.

A component is a discrete piece of software that does some specifi c, predefi ned task. Microsoft
COM is a formal standard that everyone can use to create components, ensuring that they are
compatible and reusable. Put simply, COM enables you to write a component once and then use it
everywhere. Then you can correct or enhance the component’s functionality simply by updating and
replacing the component. This means that COM is not a programming language, a library of code,
or a compiler. Rather, because COM is a binary specifi cation, it enables you to build components
that can communicate with each other regardless of the programming language or tool you choose
to build them.

Since ArcGIS is completely built on top of ArcObjects, you can make use of COM services and
capabilities to fully customize and extend the ArcGIS platform — meaning that extending the
ArcObjects data model can be done easily and with virtually all COM-compatible programming
languages. In platforms other than ArcGIS, extending the software platform could be done only
using proprietary programming languages — or even worse, only the original GIS software vendor
had the complete customization capabilities.

COM enables components to be reused at a binary level. In other words, developers do not require
access to the source code of ArcObjects in order to extend the ArcGIS platform. For this reason, an
ArcObjects programmer can make use of any type inside the ArcObjects system without knowing
the inner details of the type. The developer only needs to know what the type is able to do. Because
ArcObjects is based on the COM standard, you can easily work with it in conjunction with other
COM objects and applications.

As previously mentioned, the ArcGIS platform was built using ArcObjects types (such as classes,
interfaces, and enumerations). In the world of ArcObjects, classes use interfaces to organize proper-
ties and methods. Put simply, classes inside ArcObjects use only COM interfaces to expose their
public members and communicate with each other. When working with an ArcObjects COM class,
you never work with the properties and methods of the class; rather, you always access its properties
and methods via one of its implemented interfaces. As an example, when you instantiate an object,
you can only use one interface. However, after instantiation, you can query for any other inter-
face that is implemented by that object. This process is sometimes called a Query Interface (QI).
Classes in ArcObjects often have many interfaces. Since working with interfaces is a fundamental
skill in ArcObjects programming, the next section briefl y provides a foundation for interface-based
programming.

INTERFACE-BASED PROGRAMMING IN BRIEF

When working with ArcObjects, you almost always use the interfaces it provides. In other words,
you don’t author or implement an interface in most cases. But in this section, you briefl y see what
authoring and implementing an interface looks like.

c05.indd 140c05.indd 140 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Interface-Based Programming in Brief ❘ 141

You defi ne an interface with the Interface keyword in C#. Because an interface is nothing more
than a named set of abstract members, there is no need to provide implementation for them. The fol-
lowing code defi nes an interface with one method and one property. By convention, COM and .NET
interfaces are prefi xed with a capital letter “I.” When you create your own custom interfaces, it is
considered a best practice to do the same.

 interface I2DShape
 {
 double CalculateArea();
 int NumberOfVertices { get;}
 }

Interfaces are useless until they are implemented by a class. Here, I2DShape is an interface that
expresses the behavior of “being a 2D shape.” When a class chooses to extend its functionality by
implementing interfaces, it does so using an interface name after a colon operator, as shown in the
following code.

public class Square : I2DShape
{
 private double side;
 public Square(double side)
 {
 this.side = side;
 }
 double I2DShape.CalculateArea()
 {
 return side * side;
 }
 int I2DShape.NumberOfVertices
 {
 get
 {
 return 4;
 }
 }
}

Suppose that for some reason the authors of I2DShape decide to extend the interface. Directly chang-
ing the interface members (the number of members, names of members, and so on) results in breaking
the existing code of the Square class (and all classes that implement the I2DShape interface). Here
is the reason: Implementing an interface is an all-or-nothing task. The implementing type (in this case,
the Square class) is not able to selectively choose which members it will implement. For this reason,
instead of changing the functionality of an existing interface, the authors have to publish a new inter-
face such as I2DShape2.

 interface I2DShape2
 {
 double CalculatePerimeter();
 }

At this point, using a comma-delimited list you can indicate which interfaces should be implemented
by the Square class.

c05.indd 141c05.indd 141 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

142 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

public class Square : I2DShape, I2DShape2
 {
 private double side;
 public Square(double side)
 {
 this.side = side;
 }

 double I2DShape.CalculateArea()
 {
 return side * side;
 }

 int I2DShape.NumberOfVertices
 {
 get
 {
 return 4;
 }

 }

 double I2DShape2.CalculatePerimeter()
 {
 return 4 * this.side;
 }
 }

As you can see, a class can implement multiple interfaces. Using this approach, you ensure that
existing code (existing clients) never breaks — and this is one of the ben-
efi ts of interface-based programming.

When you want to use objects of the Square class, notice that you
cannot access the members directly; rather, you have to use one of the
implemented interfaces. As you can see in Figure 5-1, although the
Square class has some members, it is not possible to access members of
the Square class via the mySQ variable.

The following code snippet demonstrates using the I2DShape interface
for a Square object.

 //only members of I2DShape are available
 I2DShape mySQ = new Square(2.0);
 double area = mySQ.CalculateArea();
 int numOfVertices = mySQ.NumberOfVertices;

 //to access perimeter you have to cast (Query) the interface
 I2DShape2 mySQ2 = mySQ as I2DShape2;
 double perimeter = mySQ2.CalculatePerimeter();
 //mySQ and mySQ2 are the same object
 //with two different ways of exposing members

To work with a class through its interfaces, you need to declare a variable that points to an interface
supported by that class. Declaring an interface variable does not give you access to any particular
object; it simply defi nes how you will eventually communicate with the object once it is referenced.

FIGURE 5-1

c05.indd 142c05.indd 142 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Interface-Based Programming in Brief ❘ 143

The next step, therefore, is to initialize the variable to point to an actual object. Some objects can
be created by using the new keyword, while others can only be returned from another object (for
example, a FeatureClass can create a Feature, as you see later in this chapter). Once you point
your variable to a specifi c object, you can use any methods or properties that exist on that particular
interface.

If you need to access members on a different interface, you need to declare another variable that
points to the required interface. In this case, there is no need for using the new keyword because the
object existed beforehand and all that is needed is to cast or query the interface.

The previous code snippet uses the as keyword to cast the variable to the I2DShape2 interface type.
In real-world applications, it is always a good idea to check whether the underlying object imple-
mented an interface before casting. You do this using the is keyword. Here is an example:

 //using the is keyword
 if (mySQ is I2DShape2)
 {
 //following lines of code are the same
 I2DShape2 mySQ3 = (I2DShape2)mySQ;
 mySQ3 = mySQ as I2DShape2;
 }

As you notice, interfaces help a class evolve over time because new interfaces can be added to the
class to provide additional functionalities. However, once an interface is created, it can never be
updated to provide additional functionality or remove existing functionality. The actual implemen-
tation of existing members of an interface can be enhanced but additional members cannot be added
to an existing interface. If the class needs to be reprogrammed to provide additional functionalities,
new interfaces must be created. This way, the class evolves without breaking the existing client code.
When a new interface is published, the class stays the same, but the client can interact with the class
through the newest interface.

Figure 5-2 illustrates the two interfaces the Square class implements. The I2DShape interface pro-
vides NumberOfVertices as a read-only property (left-hand barbell) and the CalculateArea()
method. The I2DShape2 interface provides only the CalculatePerimeter() method. These symbols
are heavily used in ArcObjects programming. If you are familiar with Unifi ed Modeling Language
(UML), you have noticed the similarity between these symbols and the symbols of the UML Class
diagram. Esri customized the UML Class diagram to create the ArcObjects object model diagrams.
The ArcObjects object model diagrams are sets of diagrams in which almost all ArcObjects types
and their relationships are illustrated.

One of the primary tasks in programming
ArcObjects is to fi nd relevant types, properties,
and methods for the task at hand. Among the
best starting points for fi nding relevant types in
the world of ArcObjects are object model dia-
grams. Therefore, understanding object model
diagrams is as important as writing C# code. The
next section provides a comprehensive explana-
tion of understanding ArcObjects object model
diagrams.

Square

 I2DShape

I2DShape2

NumberOfVertices

CalculateArea

CalculatePerimeter

FIGURE 5-2

c05.indd 143c05.indd 143 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

144 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

UNDERSTANDING OBJECT MODEL DIAGRAMS

ArcObjects Help for .NET (which is installed with the ArcObjects SDK for Microsoft .NET)
includes several object model diagrams that describe how the ArcObjects libraries are put together.
In addition to the object model diagrams, there is a vast amount of sample code, best practices,
and descriptive help for all aspects of ArcObjects programming. Before you can use the ArcObjects
Developer help system effi ciently, you have to be familiar with using ArcGIS because if you don’t
know what tool or command to use to select features based on a spatial criterion, you are unlikely
to fi nd the required types in the Developer help system. On the other hand, if you have experience
using ArcGIS for Desktop, you will easily recognize that a map that has a feature layer has a feature
class behind it, which can be queried. Also consider that the same concept can have different names,
depending on whether you use ArcGIS as a user or as a developer (in the same way that users call
a container of fi les a folder and developers call the same thing a directory). So your knowledge of
ArcGIS is an important tool for ArcObjects development.

NOTE All COM components must (at the very least) implement the standard
IUnknown interface, and thus all COM interfaces are derived from IUnknown. The
IUnknown interface consists of three methods. AddRef() implements a reference
counting mechanism and Release()controls the lifetime of interfaces. The third
method is QueryInterface(), which allows a caller to retrieve references to the
diff erent interfaces implemented by the object. The eff ect of QueryInterface()
is similar to a cast operator in VB.NET and C#. In the COM specifi cation, the
IUnknown interface is the ultimate parent of all the interfaces. Thus, casting
(the QueryInterface() method) is available to all interfaces and objects in
ArcObjects.

NOTE The installed version of Developer help is a static version of the help sys-
tem for ArcGIS development. You can fi nd the most current documentation and
help for any topic about ArcGIS development in the ArcGIS Resource Center. You
can fi nd any development-related topic somewhere in the following address:
resources.arcgis.com. Specifi cally, ArcObjects help for .NET can be found at
http://resources.arcgis.com/en/help/arcobjects-net/conceptualhelp/.

Object model diagrams are an important part of ArcGIS Developer Help. Object model diagrams
can help you fi nd not only classes and interfaces, but also the relationships between them and useful
details about them. These diagrams are invaluable tools that help you plan how to write your code.
Object model diagrams indicate how to work with certain types (so you know if objects can be cre-
ated from a specifi c type or they must be obtained from a live object), and how each type is related
to others (a table is composed of several rows, for example).

c05.indd 144c05.indd 144 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://resources.arcgis.com/en/help/arcobjects-net/conceptualhelp/
http://resources.arcgis.com
http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 145

In fact, a few thousands interfaces and classes compose ArcObjects. Just like the .NET platform,
ArcObjects is logically divided into several namespaces. In ArcGIS Developer Help, for the sake
of simplicity each namespace is provided as a distinct object model diagram. These diagrams are
accessible through static help (installed on your machine when you install the ArcObjects SDK for
Microsoft .NET) as well as through the online ArcGIS Resource Center.

Types of Classes in ArcObjects

Figure 5-3 shows the user interface of ArcMap. Let’s see what types (such as classes, interfaces, and
structures) in ArcObjects can be found in this fi gure. In this fi gure, the currently running ArcMap
application is an Application object. Application objects can open only one *.mxd fi le. If the fi le
was previously saved, the name of the *.mxd fi le is displayed in the title bar; otherwise, a temporary
document is created and Untitled is displayed. In Figure 5-3, the Application object opens the
TestDoc.mxd fi le. *.mxd fi les in ArcObjects are called MxDocument. MxDocument objects can be
composed of multiple (at least one) Data Frames. In ArcObjects, Data Frames are called Maps. Any
Map (or Data Frame) can be composed of various types of Layers. Three Feature Layers (Layers)
can be found in Figure 5-3.

FIGURE 5-3

Figure 5-4 shows a simplifi ed object model diagram of Figure 5-3. As in mathematics and algebra,
there are standard notations and symbols in all object model diagrams.

c05.indd 145c05.indd 145 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

146 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

The following list describes the three classes in ArcObjects.

 ➤ Abstract Classes: As the name suggests, abstract classes cannot be instantiated. In other
words, you cannot create an instance of an abstract class. They are used for modeling spe-
cialization or parent-child relationships to group a set of shared properties and methods
for their subclasses. Therefore, you always fi nd that abstract classes have multiple sub-
classes. In Figure 5-4, Layer is an abstract class which has FeatureLayer, TINLayer, and
RasterLayer as its subtypes (or child classes or subclasses). All child classes inherit all the
interfaces of their own super class (parent or base class). In ArcObjects object model dia-
grams, abstract classes are always presented using a 2D shaded rectangle.

 ➤ Classes: This kind of class represents ordinary classes with one limitation. You can use
their instances but their instances must be created from other classes. For this reason, they
are sometimes called instantiable classes. Instances of these classes are often created by the
object that will contain them. In Figure 5-4, FeatureCursor (which in turn is used to create
Feature instances) can only be created by Feature class. The purpose of creating instances
of some classes using instances of other classes is consistency. In other words, when you
create instances of (instantiable) classes using other classes, the newly created instances will
be automatically put into the right context. For example, if you create a Feature instance
using an instance of a specifi c FeatureClass class (say the Sea FeatureClass), you will

TINLayer

RasterLayer

FeatureLayer

Map Layer

FeatureCursor

FeatureClass

MxDocument Application

*

*

FIGURE 5-4

c05.indd 146c05.indd 146 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 147

be sure that the newly created Feature will reside in that specifi c FeatureClass (in other
words, you create a Sea Feature). This makes more sense than creating a new Feature and
then adding it to a specifi c FeatureClass. ArcObjects Classes are shown by a 3D rectangle
without shading.

 ➤ CoClasses: CoClasses are concrete classes — they are the only kinds of classes which can
be instantiated directly using the new keyword. FeatureLayer, Map, and Application are
examples of CoClasses in Figure 5-4. As mentioned previously, an instance of a CoClass
can be created directly. Sometimes you access the instances of CoClasses that exist as live
objects or as properties of other objects. For example, since MxDocument (which represents
an ArcMap *.mxd fi le) is a CoClass, you can create brand new instances, but usually you
refer to an existing MxDocument using the Document property of the Application CoClass.
(Application.Document represents a live MxDocument instance.) CoClasses are represented
as 3D shaded rectangles in object model diagrams.

NOTE As mentioned in this section, there are three types of classes in
ArcObjects. To avoid confusion from this point forward, in this book, all the refer-
ences to these ArcObject classes will be capitalized: Abstract Class, Class, and
CoClass. The word “class” when lowercase refers to any type of class (that is,
any Class, Abstract Class, or CoClass). Also remember that “types” refers to sim-
ple data types such as double as well as complex data types such as interfaces
and classes.

Relationships between Classes

There are also relationships between various kinds of classes. In general, there are four kinds of rela-
tionships, as described in the following list.

 ➤ Type inheritance (inheritance): This is a relationship between parent and child classes.
Often a parent class is an Abstract Class. By default, all the interfaces of a parent class are
inherited to child classes. In Figure 5-4, the relationship between Layer (as a parent class)
and FeatureLayer, RasterLayer, and TINLayer (as child classes) is an example of this
kind of relationship. As shown in Figure 5-4, type inheritance relationships are represented
by a solid line with an open triangle pointing to the parent class.

 ➤ Composition: This is a relationship between the container and contained classes. Sometimes
the container and contained classes are called whole and part classes, respectively. The life-
time of part classes is controlled by the lifetime of the whole class. As an example of com-
position, a Map CoClass is composed by several Layer classes. If a Map instance is destroyed
(for example, if a user removes the Data Frame), all Layer instances inside that Map will be
destroyed. In Figure 5-4, the composition relationship is represented by a solid line with a
fi lled diamond attached to the whole class.

c05.indd 147c05.indd 147 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

148 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

 ➤ Instantiation: At least one of the participants of this relationship is a Class. Usually there is
a member in one of the interfaces of the origin Class which creates an instance of the desti-
nation Class. In Figure 5-4, the relationship between FeatureClass and FeatureCursor is
a type of instantiation and FeatureClass has a method (you see that in Chapter 7) to cre-
ate a FeatureCursor instance. This relationship is displayed by a dashed line with a fi lled
triangle pointing to the target Class.

 ➤ Association: Relationships other than inheritance, instantiation, and composition are
called associations. In contrast to composition, in this relationship there is no control on
lifetimes of each participant. In other words, if one participant is destroyed, the other par-
ticipant could live independently. In Figure 5-4, there is an association relationship between
FeatureClass and FeatureLayer. The association is shown using a solid line between
participants. If more than two participants are involved in an association relationship, a
diamond is placed at the intersection of all participants. For example, as a user of ArcMap,
in order to perform the Select By Attribute operation on a table, you utilize the Select By
Attribute window, then build a query, and fi nally execute the built query. As a result, some
records of the table might be selected. To perform the same task in code, one instance of
the Table Class and one instance of the QueryFilter CoClass should be used to create
an instance of a SelectionSet Class (see Figure 5-5). Simply speaking, the SelectionSet
instance contains selected records.

QueryFilter Table

SelectionSet

FIGURE 5-5

Association and composition relationships should indicate multiplicity or cardinality. Multiplicity
or cardinality refers to the number of objects that can participate in a relationship. It should be dis-
played on both ends of the association and composition. In Figure 5-6, one or more Field Instances
are associated with exactly one instance of the Fields CoClass. In addition, exactly one instance
of the Fields CoClass is associated with one instance of the Table Class. Note that if nothing is
shown as multiplicity, you can always consider it as 1. So Figure 5-6 shows exactly the same multi-
plicity or cardinality as Figure 5-7.

1..*

Fields Field Table

FIGURE 5-6

c05.indd 148c05.indd 148 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 149

Members of Interfaces

Classes in ArcObjects expose their members through interfaces. All the interfaces of a class are
listed on object model diagrams. But all the members of only some of the more common interfaces
are displayed on the diagrams. A complete list of the members of each interface can be found in the
ArcGIS Developer Help. As you already know, properties, methods, and events comprise members
of an interface.

Properties on the object model diagrams are generally illustrated using a barbell symbol. Since prop-
erties can be read-only, write-only, or read-write, different symbols are used to denote these charac-
teristics. Figure 5-8 shows various kinds of properties.

1..*111

Fields Field Table

FIGURE 5-7

NOTE Relationships between interfaces are discussed in the “Interface
Inheritance” section later in this chapter. The list in this section describes the
relationship between classes only.

Application

IApplication

Caption: String

Document: IDocument

CurrentTool: ICommandItem

IApplication: IDispatch

FIGURE 5-8

As shown in Figure 5-8, IApplication is one of the interfaces of the Application CoClass. All
the interfaces on object model diagrams are shown using a lollipop symbol. Data types of all prop-
erties are specifi ed after the name of each property. For example, Caption is of type String and
Document is of type IDocument. If the data type of a property is interface, then it points to an object
that implements that interface. In this example, the Document property is of type IDocument. The
IDocument interface is implemented by the MxDocument CoClass. So the Document property is a
live instance of the MxDocument CoClass. As a result, the relationship between Application and
MxDocument CoClasses is made using the Document property of the IApplication interface. This
is an important point in understanding object model diagrams. To summarize, if two classes have

c05.indd 149c05.indd 149 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

150 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

an association with each other, you can always fi nd a member of one participant that references an
implemented interface of the other participant.

The left box of the barbell denotes the capability to get the property, whereas the right box shows
the capability to set the property. So in Figure 5-8, Caption is a read-write property and Document
is a read-only property.

In addition, a fi lled box denotes Value types while a hollow box denotes Reference types. As
you can see in Figure 5-8, the Caption property is a Value type whereas the CurrentTool is
a Reference type property — meaning that if you assign a String variable as the Caption of
IApplication, modifi cation of the value of the String variable has no effect on the Caption of
ArcMap. On the other hand, any change in the referenced CurrentTool of Application will be
refl ected to the CurrentTool property. This concept is covered in more detail in Chapter 4.

Methods are symbolized on the diagrams with a solid arrow. In addition to the name of the method,
any required arguments from the method, return values from the method, or both will be specifi ed
as part of the diagram listing.

In Figure 5-9, RefreshWindow doesn’t require any parameter. SaveDocument needs an input param-
eter, which is denoted by the In keyword of type String. As you can see, the object model diagram
provides little help to fi nd out what a method does and what it expects. The third method returns
the IExtension interface, which is a reference to a live object that implements the interface.

Application

IApplication

Caption: String

Document: IDocument

CurrentTool: ICommandItem

IApplication: IDispatch

RefreshWindow

SaveDocument (in saveAsPath:

String)

FindExtensionByName (In

extensionName: String) :

IExtension

FIGURE 5-9

c05.indd 150c05.indd 150 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 151

Events are illustrated like methods. They often reside on interfaces that contain the Events key-
word. In addition, they usually have no return value. In Figure 5-10, IFindPanelEvents is an inter-
face that is implemented by FindWindowUI.

FindWindowUI

IFindPanelEvents IFindPanelEvents: IUnknown

ExecuteFind (refreshResultsOnly:

Boolean)

OutputsChanged

FIGURE 5-10

Interface Inheritance

To this point in this chapter, you have learned that one of the possible relationships between classes
is inheritance. Through inheritance, all the interfaces of the parent class are inherited by its child
classes. Also you have seen that ArcObjects is a huge set of COM components. Interfaces in COM
defi ne the public functionality of components that other components can use. In other words, inter-
action between components in COM is performed using interfaces.

In the COM specifi cation, IUnknown is the ultimate parent interface of all interfaces. In other words,
all the components in a COM system must directly or indirectly implement it. As mentioned previ-
ously in this chapter, the capability to switch or cast between various interfaces of a class is achieved
through this interface (more specifi cally, through the QueryInterface() method of IUnknown).

Often in an ArcObjects object model diagram, you see the IUnknown interface after the name of
many interfaces. This notation is used to express interface inheritance. For example, in Figure 5-10,
the IFindPanelEvents inherits from the IUnknown interface; in Figure 5-9, the IApplication
interface is inherited from the IDispatch interface. In interface inheritance, all members of a parent
interface are inherited to the child interfaces. (The IDispatch interface is implemented by a class if
there is a need to access that class from a scripting environment [such as JavaScript]).

To summarize, IUnknown must be defi ned for any component to make it a COM component. The
IDispatch interface, which derives from the IUnknown interface, is implemented primarily for
the benefi t of scripting languages. Whenever you program in high-level programming languages
such as C# or VB.NET, these interface inheritance relationships don’t have any tangible effect on
the way you code. The majority of ArcObjects interfaces are inherited directly from IUnknown or
IDispatch. The remaining interfaces have a direct parent other than the two famous COM inter-
faces. As illustrated in Figure 5-12, FeatureClass inherits from ObjectClass. In addition to this
ordinary type inheritance, the IFeatureClass interface inherits from the IObjectClass interface.
By this interface inheritance, you get all the members of IObjectClass on IFeatureClass directly
and without needing to cast an interface.

c05.indd 151c05.indd 151 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

152 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

You can check interface inheritance using the autocomplete feature of Visual Studio, as shown in
Figure 5-12.

FIGURE 5-12

ObjectClass

IObjectClass

ObjectClassID: Long

AliasName: String

Other properties and methods

IObjectClass: IClass

FeatureClass

IFeatureClass

AreaField: IField

ShapeFieldName: String

Other properties and methods

IFeatureClass: IObjectClass

FIGURE 5-11

c05.indd 152c05.indd 152 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 153

Wormhole

In addition to providing ArcObjects namespaces, to make the lives of ArcObjects developers a little
bit simpler, object model diagrams are logically organized into various diagrams. When a class in
one diagram (namespace) is related to a class in another diagram, an ellipsoid is used to create what
is called a wormhole. The wormhole specifi es the related class and the diagram on which it appears.
In the example shown in Figure 5-13, the wormhole shows the composition between Map CoClass in
a Carto diagram and MxDocument in an ArcMapUI diagram.

FIGURE 5-13

FIGURE 5-14

This relationship is also presented in the ArcMapUI as well, as shown in Figure 5-15.

Additional Tips for Using Object Model Diagrams

Object model diagrams are invaluable tools for ArcObjects developers. They represent all the inter-
faces of all types inside ArcObjects. They also express the relationships between types. But they
have some limitations.

c05.indd 153c05.indd 153 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

154 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

They don’t provide all the members for all the interfaces of a class. They only provide a complete
list of members of a few common interfaces for each class. Another limitation is that not all the rela-
tionships are represented on the diagrams. In addition, they provide little help on parameters and
the return values of methods. In other words, they don’t provide descriptive tips and help for each
member. Object model diagrams are valuable tools for planning how to write code, but other tools
are needed for effi cient ArcObjects programming.

In order to get brief tips as well as descriptive help for all members of all interfaces, Visual Studio’s
Object Browser window and ArcGIS Developer Help can be used.

To try Object Browser, open in Visual Studio the fi rst add-in project you developed in Chapter 2
(Simplest add-in). From the View menu, select Object Browser to open the Object Browser window.
The left panel in Object Browser lists all the available assemblies. If you expand the ESRI.ArcGIS
.Carto assembly from the left panel, as shown in Figure 5-15, you will see all types (enumerations,
classes, and interfaces) inside this assembly. Scroll down to IFeatureLayer to see its members.
Alternatively, you can type the name of any type in the textbox above the Object Browser window
to search for it. Click on one of its members to see a brief tip for that member.

In addition to Object Browser, ArcGIS Developer Help provides all necessary information for
successful ArcObjects development. The ArcGIS Developer Help is installed locally as part of
ArcObjects SDK for .NET. In fact, ArcObjects object model diagrams are a part of ArcGIS
Developer Help. All the object model diagrams are available in Adobe Portable Document Format
(.pdf) and can be accessed using the following address on your machine: <ArcGIS installation
folder>\DeveloperKit10.10\Diagrams.

As previously mentioned, the most current topics on development of ArcObjects as well as ArcGIS
Developer Help can be accessed through the ArcGIS Resource Center (http://resources.arcgis
.com/en/help/arcobjects-net/conceptualhelp/).

The fi nal tip that is good to know is that the Object Browser does not show the explicit relationships
between types as the object model diagrams do. With all your knowledge of object model diagrams,
you still need to address two questions: What is your entry point into the ArcObjects system and

FIGURE 5-15

c05.indd 154c05.indd 154 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://resources.arcgis.com/en/help/arcobjects-net/conceptualhelp/
http://resources.arcgis.com/en/help/arcobjects-net/conceptualhelp/
http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 155

how can you navigate between the types? The next sections walk you through the steps needed for
addressing these questions.

Where to Start with ArcObjects

When developing ArcObjects, whether using Desktop Add-Ins or Extending ArcObjects project
templates, you always have a preset and public variable that is the entry point of your code in the
ArcObjects world. The public variable is always, regardless of the kind of desktop application, of
type IApplication interface.

In the case of Desktop Add-Ins, the name of this public variable is Application. Based on the type
of project template, it can point to different applications. For example, if you select the ArcMap Add-in
project template, you can easily discover that the Application variable is of type IApplication
interface of ArcMap’s Application CoClass (the Application CoClass in the ArcMap object model
diagram); if you select the ArcCatalog add-in project template, the Application variable is of type
IApplication of ArcCatalog’s Application CoClass. To discover this fact, you can simply open the
Config.Designer.cs (for C#) in the Solution Explorer window inside Visual Studio and scroll down
to the declaration section of ArcMap Class, as shown in Figure 5-16.

FIGURE 5-16

As you see in Figure 5-16, the ArcMap class is defi ned with the keyword static, which means this
class can be used without using a live instance of this class (remember the System.Math class in
Chapter 3 in the “Operations on Variables” section). Also, you can see that the Application prop-
erty is of type IApplication and all the ArcGIS for Desktop applications implement this interface,
but with a little exploration it is discovered that the add-in hooks into the execution of an object
that exactly implements IMxApplication interface. (Is it ArcMap?)

c05.indd 155c05.indd 155 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

156 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

In addition to the Application property, the IApplication interface provides the Document prop-
erty. Because you usually need to interact with the contents of an application (such as layers inside a
map or features in a feature class inside ArcMap), you usually use this property directly. Alternatively,
you can access the contents of an application using Application’s static Document property.

The only difference between these approaches is that the Application.Document property always,
regardless of the kind of application (such as ArcMap, ArcCatalog, or ArcScene), points to the
IDocument interface. However, the Document property of a specifi c kind of application (such as
ArcMap, ArcCatalog, or ArcScene) points to the most common interface of that application.

You can discover similar patterns in other types of templates for Desktop Add-Ins. Table 5-1 sum-
marizes the entry points for different ArcGIS for Desktop applications and the type of Document
property of them.

TABLE 5-1: Entry Points

TEMPLATE OF

ADD-IN ADD-IN ENTRY POINT

TYPE OF DOCUMENT PROPERTY (TYPE OF

ARCXXX.DOCUMENT)

ArcMap ArcMap.Application IMxDocument

ArcCatalog ArcCatalog.Application IDocument

ArcScene ArcScene.Application ISxDocument

ArcGlobe ArcGlobe.Application IGMxDocument

In the case of Extending ArcObjects project templates, the public and preset variable is called
m_application, which, as in the case of Desktop Add-Ins, is of type IApplication interface.
Because Extending ArcObjects project templates have no defi nition for static classes for different
kinds of ArcGIS Desktop applications (such as ArcMap class and ArcCatalog class), the main entry
point of your code is the m_application variable. As you do with Desktop Add-Ins, usually you
rely on your knowledge of ArcObjects development to explore, manipulate, and process the con-
tents of various ArcGIS for Desktop applications. So you use the Document property of this variable
(m_application.Document).

In summary, you start coding by using the Application or m_application preset and public vari-
ables in Desktop Add-Ins and Extending ArcObjects project templates, respectively. With those two
variables, you begin your journey of ArcObjects development.

How to Find an Associated Member

ArcGIS Developer Help is often used as the main resource for discovering the types and relation-
ships between various types. As a part of Developer Help, object model diagrams display all inter-
faces of all classes and explicitly illustrate the majority of relationships between classes. But in order
to explore all interfaces of all classes and all members of any interface, you have to resort to other
parts of Developer Help and tools, such as Object Browser in Visual Studio. That could be an easy
but time-consuming task.

c05.indd 156c05.indd 156 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 157

In order to explore the relationships between types, you have to make use of object model diagrams.
In all the relationships except type inheritance, there is always at least one member (property,
method, or event) in one participant that enables the relationship between two types. Suppose that
TypeA and TypeB have a relationship other than inheritance and the enabling member belongs
to TypeA. If the member that enables the relationship is a property, that property points to one
of the implemented interfaces of TypeB. If the member that enables the relationship is a method, then
the method returns one of the implemented interfaces of TypeB or the method expects one of the
implemented interfaces of TypeB as an input parameter. Figure 5-17 illustrates this.

NOTE As you know, in inheritance relationships, all the interfaces of a parent
class are inherited by the child class, which is why there are no members in child
classes which enable the inheritance relationship.

But now three important questions come to mind: How can you fi nd a member that enables the
relationship between two specifi c types? Is there a logical way to fi nd that member? Can you explore
that member programmatically?

At fi rst fi nding this member seems to be hard. But as you work with ArcObjects, you will discover
your own way of fi nding it. You simply need the experience of working with ArcGIS as a user with
curiosity, patience, and willingness to invest enough elbow grease, as well as using available tools
such as ArcGIS Developer Help. The next Try It Out walks you through using ArcGIS Developer
Help and Visual Studio’s Object Browser to fi nd the member(s) that makes the relationship between
the MxDocument and Map Classes. Remember that you can search for specifi c topics in the ArcGIS
Developer Help (in fact, ArcGIS Developer Help works as a search engine that provides all the
related topics of a subject matter) and fi nd how to write the necessary code for the task at hand. But
this approach should be used when you have suffi cient experience working with ArcObjects. For
this reason, throughout this book you only use the ArcGIS Developer Help as a source for exploring
object model diagrams as well as fi nding types and members of types. But feel free to play around
and learn with this resource.

TypeB

ITypeB1

PropertyB1: String

PropertyB2: Long

ITypeB: IUnknown

MethodB1: String

ITypeB2

ITypeB3
PropertyB3: Boolean

TypeA

ITypeA1

PropertyA1: String

PropertyA2: Double

PropertyA3: ITypeB2

ITypeA: IUnknown

MethodA1: ITypeB3

ITypeA2

MethodA2 (in

ITypeB1): Long

FIGURE 5-17

c05.indd 157c05.indd 157 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

158 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

TRY IT OUT Exploring the Relationship between MxDocument and Map CoClasses

 1. Your experience and knowledge of ArcMap tells you that the enabling member of the relationship
between the MxDocument and Map CoClasses should be in one of the interfaces of the MxDocument
CoClass. As previously mentioned, MxDocument (*.mxd fi le) can contain multiple Maps (Data
Frames). Any specifi c Map will not belong to more than one MxDocument. So an MxDocument
should have at least one member that points to its Maps.

 2. Open the local ArcGIS Developer Help or browse to the online ArcGIS Resource Center. Search
for “MxDocument.” From the results, select MxDocument Class to see helpful information about
this type. At the top of the page you can see the assembly containing this type. In addition, you
can fi nd a link to the object model diagram fi le in which you can fi nd this type. MxDocument is
documented in the ArcMapUI object model diagram and is contained in the ESRI.ArcGIS
.ArcMapUI assembly.

 3. Perform the same search for “Map class” to see its description, interfaces, and assembly informa-
tion. This type resides in the ESRI.ArcGIS.Carto.dll assembly and you can see its object model
in CartoObjectModel.pdf.

 4. Open CartoObjectModel.pdf. You can
fi nd it locally in <ArcGIS installation
folder>\DeveloperKit10.1\Diagrams or
in the Online Resource Center. Search for
MxDocument class in CartoObjectModel.pdf.
With the help of object model diagrams, you
fi nd out that the type of relationship between
those two classes is composition: Several maps
compose a single MxDocument. So it is also
logically correct that there should be a mem-
ber in the MxDocument CoClass that has a
reference to one of the implemented interfaces
of the Map CoClass. Figure 5-18 displays a
simplifi ed view of the relationship.

 5. At this point, you have to explore members of the MxDocument type. You can use ArcGIS
Developer Help as well as Visual Studio’s Object Browser to fi nd a member or members that point
to the implemented interfaces of the Map CoClass. Since it is easier to explore the members in
Visual Studio Object Browser, open the FirstAddin project (you developed it in Chapter 2), and
from the View menu select Object Browser. In the previous steps, you found that the MxDocument
type resides in the ESRI.ArcGIS.ArcMapUI assembly. So look for MxDocument inside that
namespace.

 6. The MxDocument CoClass implements more than 20 interfaces. In the right panel, you can see
the list of members. If you select a specifi c interface from the left panel, all the members of that
interface will be shown in the right panel. If the class is selected, all the members on all interfaces
will be shown. Select the class to see all the members. By right-clicking in the right panel, you

*

Application MxDocument

Map

FIGURE 5-18

c05.indd 158c05.indd 158 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 159

can control the way members are displayed.
Right-click somewhere in the right panel and
select the Group By Member Type item from
the context menu (see Figure 5-19).

 7. There are more than 200 members in the
MxDocument CoClass and you have to fi nd a
member with one of the implemented inter-
faces of the Map CoClass. Unfortunately, there
is no way to search members inside Object
Browser by providing criteria. You have to
explore all the members one by one. To make
matters even worse, you have to scroll down
to each member to see its details, such as data
type, return type (in the case of methods),
and so on. But you can discover from the ArcMapUI object model diagram that IMxDocument is
the main interface of the MxDocument type. So you can limit your search to the members of the
IMxDocument interface. So in the left panel click on the IMxDocument interface.

 9. You can fi nd a member named FocusMap of type IMap interface, which seems to have some sort of
relationship with the Map Class. If you check the Map CoClass in the Carto object model diagram,
you will see that the Map CoClass implements the IMap interface. So the FocusMap property of the
MxDocument CoClass is the member that enables the relationship between the MxDocument and Map
Classes.

How It Works

In this Try It Out, you learned how to fi nd a member that enables a relationship. You have used ArcGIS
Developer Help and Visual Studio’s Object Browser to fi nd a specifi c type, list of implemented inter-
faces, and details of members of a specifi c interface. Often you deal with the main interfaces of classes
in ArcObjects. Fortunately in most cases, all members of the main interfaces are shown on the object
model diagram. So in order to fi nd a member that enables a relationship, you can limit your search to a
small set of members displayed on object model diagrams and then, if you can’t fi nd any related mem-
ber, you can explore other interfaces.

The Visual Studio Object Browser uses a concept of refl ection to discover the details of any type.
More specifi cally, metadata of assemblies can be queried to fi nd out the details, such as the con-
taining namespaces, types (classes, interfaces, structures, and enumerations), and the details of
each type. In .NET, types inside the System.Reflection namespace provide services to examine
the types and get all the necessary information for using each type. In addition, types inside the
System.Reflection namespace enable you to obtain that information programmatically. In fact,
Visual Studio’s Object Browser uses the types inside the System.Reflection namespace to list all
information about types. Refl ection is an advanced topic in .NET programming, and it is outside
the scope of this book. But if you are familiar with refl ection, you can create a simple application
that automatically fi nds members that enable the relationship between types.

FIGURE 5-19

c05.indd 159c05.indd 159 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

160 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

.NET Refl ector (http://www.reflector.net) and ILSpy (http://wiki.sharpdevelop.net/
ILSpy.ashx) are two famous tools which use refl ection to provide access to a type’s metadata.
These two tools provide all the information (and many more features) provided by Visual Studio’s
Object Browser, but in a friendlier fashion. Also custom add-ins can be developed for both tools
to add custom functionality. One interesting add-in (Assembly Visualizer), developed by Denis
Markelov, provides a friendly visual representation of each member. You can download this add-in
from http://www.denismarkelov.com/p/assembly-visualizer.html. This add-in is available
for both ILSpy and Refl ector. You can see ILSpy in Figure 5-20.

As you can see, ILSpy shows the data type of each property and the signature of each method for
each type. Download ILSpy from http://wiki.sharpdevelop.net/ILSpy.ashx. In order to use
the Assembly Visualizer add-in, fi rst download the add-in (which is a .dll fi le) and just copy the
downloaded add-in fi le beside the executable fi le (ILSpy.exe) of the ILSpy software. The add-in
adds some context menu items to ILSpy. You can search for any type by selecting the Search item
from the View menu. The following Try It Out uses ILSpy with the plug-in downloaded to discover
the member in the MxDocument class that enables the relationship between the MxDocument and Map
Classes.

FIGURE 5-20

c05.indd 160c05.indd 160 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.reflector.net
http://wiki.sharpdevelop.net/ILSpy.ashx
http://wiki.sharpdevelop.net/ILSpy.ashx
http://www.denismarkelov.com/p/assembly-visualizer.html
http://wiki.sharpdevelop.net/ILSpy.ashx
http://www.it-ebooks.info/

Understanding Object Model Diagrams ❘ 161

TRY IT OUT Using ILSpy to Explore the Relationship between the
MxDocument and Map Classes

 1. Run ILSpy by double-clicking on the ILSpy.exe fi le.

 2. Add two assemblies that contain the MxDocument and Map Classes. From the File menu, select
the Open item. Navigate to <ArcGIS installation folder>\DeveloperKit10.1\DotNet and
select ESRI.ArcGIS.ArcMapUI.dll and ESRI.ArcGIS.Carto.dll, then click the Open button.

 3. Click the Search button on the main toolbar or press F3. Enter the MxDocumentClass into the
search box. You will notice that as you type, results are fi ltered accordingly. Double-click on the
fi rst result (see Figure 5-21).

FIGURE 5-21

 4. Right-click on the MxDocumentClass in the Catalog list on the left-hand side and select Browse
Ancestry from the context menu. A new window pops up, which shows all the members of
MxDocument and its parent. As shown in Figure 5-22, in the box above the window enter Map to
fi lter out the members using the entered string.

c05.indd 161c05.indd 161 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

162 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

 5. As you can see, the FocusMap property is of type IMap. For ensuring that the Map class also imple-
ments the IMap interface, you can search for MapClass in ILSpy, as shown in Figure 5-23. So
enter MapClass in the Search textbox of ILSpy. As you can see, there are two MapClass items in
the search results. Double-click the MapClass that resides in the ESRI.ArcGIS.Carto namespace.
Then expand its Base Types node to see its interfaces.

FIGURE 5-23

FIGURE 5-22

c05.indd 162c05.indd 162 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 163

How It Works

Tools such as ILSpy provide friendlier ways to explore types and the relationships between types. ILSpy
is faster than Visual Studio’s Object Browser and also consumes less computer memory. It provides a
signature for methods and the data type of properties in a more effi cient manner. Searching for types
is easier in ILSpy than in Visual Studio’s Object Browser. There are also several free and useful add-ins
for ILSpy.

Developing ArcObjects using any technology involves fi nding relevant types in ArcObjects and mak-
ing use of those types to perform the task at hand. Although Microsoft is the creator of COM and
.NET, they are two distinct technologies. Therefore there are many tips and tricks to working with
COM-based ArcObjects in .NET.

As an important point of using ArcObjects in .NET, all classes of ArcObjects have the same name as
in the object model diagrams, with “Class” appended. For example, the MxDocument class is con-
verted to MxDocumentClass in .NET and SelectionSet is converted to SelectionSetClass. This
is why you searched for MxDocumentClass in the preceding Try It Out.

SUMMARY

In this chapter, you learned the nuts and bolts of ArcObjects types using ArcGIS Developer Help.
As special part of ArcGIS Developer Help, object model diagrams illustrate the interfaces that are
implemented by various classes inside the ArcObjects, members of main interfaces of each class, and
the relationships between classes. This chapter also covered the special visual symbols and notations
used in object model diagrams. Now you understand the most important details of object model
diagrams, but a few advanced details will be covered later in this book where appropriate. Finally in
this chapter, you saw how working with tools such as Visual Studio’s Object Browser and ILSpy can
simplify the process of ArcObjects development.

EXERCISES

 1. What are the types of Classes in ArcObjects?

 2. What is a type inheritance relationship?

 3. What is interface inheritance?

 4. What is the main entry point to ArcObjects development in code?

You will fi nd the answers to these exercises in this book’s appendix.

c05.indd 163c05.indd 163 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

164 ❘ CHAPTER 5 UNDERSTANDING ARCOBJECTS OBJECT MODEL DIAGRAMS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Interface Interfaces are a named set of abstract (not implemented) properties,

 methods, and events. Interfaces are mainly used for implementing an

evolving software system. One of the main standards for interface-based

software development is Microsoft COM. Microsoft COM is the basis for

ArcObjects. ArcObjects types are accessed using their interfaces.

Members of an

interface

The properties, methods, and events of an interface are the members of

that interface. In addition, if one interface is inherited by another inter-

face, the members of the parent interface are also members of the child

interface.

Exploring

relationships

between types

In order to explore the relationships between types, you have to make use

of object model diagrams. In all relationships, there are always one or more

members (property, method, or event) in one participant that enable the

relationship between two types.

c05.indd 164c05.indd 164 25/02/13 4:16 PM25/02/13 4:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Maps and Layers

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Exploring object model diagrams for accessing maps and layers

 ➤ Working with enums

 ➤ General characteristics of layers

 ➤ A fi rst look at the FeatureLayer and RasterLayer CoClasses

 ➤ Adding a *.lyr fi le to a map

 ➤ Showing and tweaking the Add Data dialogbox

 ➤ Saving *.lyr and *.mxd fi les

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=0123456789 on the Download Code tab. The code is in the Chapter06 folder and
individually named according to the names throughout the chapter.

In Chapter 5, you learned the necessary skills for interpreting object model diagrams and
fi nding related types in the ArcObjects system. In this chapter, you use those skills to study
how to access Data Frames and the layers inside them in the ArcMap application. You will
also learn how to work with *.mxd and *.lyr fi les.

INTRODUCTION TO MAPS AND LAYERS IN ARCOBJECTS

A map document (MxDocument instance) is composed of maps (Map instances) and layers
(Layer instances). Maps are containers of layers, and layers provide a fl exible way for
representing geospatial data. Layers don’t contain geospatial data; instead, they point to

6

c06.indd 165c06.indd 165 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=0123456789
http://www.wrox.com/remtitle.cgi?isbn=0123456789
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

166 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

where geospatial data are stored. Layers are rendered in a specifi c order displayed in the map’s
table of contents. When a geospatial data item (such as a shapefi le, a feature class of a geodatabase,
or a satellite image) is added to a map, a temporary Layer object is created in memory. Based on
the added geospatial data, the Layer object can be of various types, such as FeatureLayer and
RasterLayer.

The MxDocument instance can stay temporarily in memory or be saved as an *.mxd fi le.
Specifi cations for the contents of an MxDocument (maps and layers) comprise the most important
information inside an MxDocument instance. Information such as the number of maps, the active
map, and the number of layers inside each map can be extracted from the properties of a live
MxDocument instance. Also, actions such as adding a layer to the active Data Frame can be done by
a live instance of an MxDocument CoClass. All in all, the MxDocument CoClass is the central point
in accessing maps and layers.

Same as an MxDocument instance, Layer instances also can be saved as *.lyr fi les. Similar to
in-memory Layer instances, the *.lyr fi les just point to geospatial data and contain the necessary
information that specifi es how to render geospatial data.

Figure 6-1 provides a simplifi ed diagram for accessing maps and layers. In this fi gure, the most
commonly used interfaces of each type are presented. Feel free to explore other interfaces on your own.

ArcMapUIObjectModel

*

Application

IApplication

MxDocument

IMxDocument

IDocumentInfo2

Map

IMap

IActiveView

ArcMapObjectModel

*

CartoObjectModel

FeatureLayer

IFeatureLayer

ILayer

Other subclasses of

Layer Abstract Class

IDocument

IFeatureLayer2

ILayer2
RasterLayer

IRasterLayer

IGeoReference

ILayer2

ILayerGeneral

Properties (optional)

esriGeoDatabase

.IGeodataset

Layer

FIGURE 6-1

c06.indd 166c06.indd 166 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Maps and Layers In ArcObjects ❘ 167

NOTE As discussed in Chapter 5, there is virtually no diff erence between the
entry point to the ArcObjects system using Desktop Add-Ins and the Extending
ArcObjects project templates in Visual Studio. Most examples throughout this
book are based on the Desktop Add-Ins template. In special cases when using
one template is easier, the easier template will be discussed fi rst and then diff er-
ences with the other template will be explained.

The Document property of the IApplication object points to the IDocument interface. So to get
to the IMxDocument interface all that is required is to cast from IDocument to IMxDocument. If you
use the Desktop Add-Ins project template, the code for performing this task would be similar to the
following code snippet:

 IDocument doc = ArcMap.Application.Document;
 //casting interface to get to IMxDocument
 IMxDocument mxdoc = doc as IMxDocument;

IMxDocument has a property that enables the composition relationship with the Map CoClass.
(Chapter 5 discusses this property.) The type of this property is IMap and it points to the active Data
Frame in the Table Of Contents window.

IMap map = mxdoc.FocusMap;

If there is one map inside MxDocument, the FocusMap property points to that map. Sometimes an
MxDocument contains more than one map. The Maps property must be used in order to access all
maps inside an MxDocument instance. As the name suggests, this property behaves like a collection
and provides members for iterating through each map.

 IMaps maps = mxdoc.Maps;
 for (int i = 0; i< maps.Count; i++)
 {
 IMap map = maps.get_Item(i);
 }

To access the active Data Frame (FocusMap) in this case, use the IActiveView interface of the
Map CoClass. The IActiveView interface controls all rendering operations in the main window of
ArcMap. This interface provides the IsActive() method, which returns a bool value indicating
whether a Map object has focus (the Data Frame is activated) or not.

 IMaps maps = mxdoc.Maps;
 for (int i = 0; i< maps.Count; i++)
 {
 IMap map = maps.get_Item(i);
 IActiveView activeView = map as IActiveView;

 if (activeView.IsActive() == true)
 {
 //do something with focus map
 } else
 {
 //do something with other maps
 }
 }

c06.indd 167c06.indd 167 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

168 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

NOTE Like the COM specifi cation, the .NET platform has some predefi ned
interfaces such as ICloneable, IEnumerable, and IComparer. Any class that
implements these interfaces gets useful capabilities similar to those that
internal .NET types have. For example, any collection-like class that implements
IEnumerable or IEnumerator can provide the capability to iterate through its
members using a foreach construct. The IEnumerator interface is implemented
for all arrays of simple types as well as most collection types (generic and non-
generic) in .NET. But unfortunately, neither the IEnumerable nor IEnumerator
interfaces are implemented for collections inside ArcObjects. For this reason, the
following code results in a compiler error.

 foreach (IMap map in maps)
 {
 //do something with map
 }

As is true for an MxDocument instance that provides a collection for its comprising maps, each
Map instance has members such as Layer and Layer properties to access its containing layers. The
following Try It Out illustrates how to use those members.

TRY IT OUT Accessing Layers of Maps (LayersOfMaps.zip)

 1. Run Visual Studio and start a new project. Ensure that you have selected .NET Framework 3.5 as
the target platform. In the New Project window, expand the Visual C# ➪ ArcGIS node and select
ArcMap Add-in from the Desktop Add-Ins templates. Provide LayersOfMaps as the name of the
add-in and solution, and click the OK button.

 2. The ArcGIS Add-Ins Wizard window is shown. Enter your information (see Figure 6-2) and click
the Next button.

FIGURE 6-2

c06.indd 168c06.indd 168 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Maps and Layers In ArcObjects ❘ 169

 3. Select Button as the type of add-in and provide the necessary information as shown in Figure 6-3.
Click the Finish button.

FIGURE 6-3

 4. Adding necessary references is the fi rst task to do. So from the Solution Explorer window inside
Visual Studio, right-click on the References folder and select the Add ArcGIS Reference item. Add
the ESRI.ArcGIS.Carto reference from the Desktop ArcMap folder to the project (This reference
is needed to access Map and Layer objects in ArcMap).

 5. In Solution Explorer, double-click the Button class (LayersOfMapsButton.cs) and add the
following using directives at the top of the code:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Framework;

 6. Right-click on the project (LayersOfMaps) in Solution Explorer, and from the Add menu choose
the Windows Form item as shown in Figure 6-4. In the Add New Item window, change the name
of the form from Form1.cs to Message.cs and click the Add button.

c06.indd 169c06.indd 169 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

170 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

 7. Add a Label control to the newly added form by double-clicking the Label item on the Toolbox
window. If the Toolbox window is hidden, you can turn it on using the View menu. Select
the label and change its name to lbl, AutoSize to False, and Size to 280;280 (width=280 and
height=280) in the Properties window in Visual Studio.

 8. Because you want to access the Label control (lbl) from
outside the Windows Form (actually from outside the
Message.cs class), you have to change its Modifiers
property to Public or Internal. So change that property to
Public as shown in Figure 6-5.

 9. Double-click the Button class (LayersOfMapsButton.cs),
then add the necessary code inside the click event handler
to iterate through all Layer objects, and list the name of
each Layer object in the Label control of the Message form.
The following code uses both the LayerCount and Layers
properties to iterate through all layers inside a map:

 protected override void OnClick()
 {
 string data = "";

 IDocument doc = ArcMap.Application.Document;
 IMxDocument mxDoc = doc as IMxDocument;

 IMap map = mxDoc.FocusMap;
 //using layerCount property
 data += "Using LayerCount Property \n";

 ILayer layer;
 for (int i = 0; i < map.LayerCount; i++)
 {
 layer = map.Layer[i];

FIGURE 6-4

FIGURE 6-5

c06.indd 170c06.indd 170 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Maps and Layers In ArcObjects ❘ 171

 data += " >> " +layer.Name + "\n";
 }
 //Terminating layer object
 layer = null;
 data += string.Format("{0} Map contains {1} Layers\n", map.Name,
 map.LayerCount);
 data += "--------------------------------------\n";
 data += "Using Layers Property \n";
 IEnumLayer enumLayer = map.Layers;
 layer = enumLayer.Next();
 int j = 0;
 while (layer != null)
 {
 j++;
 data += " >> " + layer.Name + "\n";
 layer = enumLayer.Next();
 }
 data += string.Format("{0} Map contains {1} Layers", map.Name, j);

 Message msgForm = new Message();
 msgForm.lbl.Text = data;
 msgForm.ShowDialog();

 }

 10. Right-click on the project in Solution Explorer. Select Properties as shown in Figure 6-6 or press
Alt+Enter when the project is selected in Solution Explorer to display a new tab in Visual Studio.

FIGURE 6-6

 11. The newly opened tab is called Project Designer and contains settings for the project. Go to the
Debug page shown in Figure 6-7.

c06.indd 171c06.indd 171 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

172 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

FIGURE 6-7

 12. As you can see, ArcMap is set as the external program. This means that when you press F5 (or
Start Debugging your project), Visual Studio runs ArcMap and listens to its events to debug your
code. Because ArcGIS can be installed in different
locations on various computers, whenever you get a
Visual Studio solution for an ArcGIS project from
other developers you have to check that ArcMap is
set as the external program.

 13. Press F5 to test your code. A few seconds later,
ArcMap comes up. In both the Desktop Add-Ins
and Extending ArcObjects project templates, you
have to use the Customize window to test the
functionality of your project. In ArcMap, select
Customize Mode from the Customize menu.
Remember that you set ArcGISBook as the category
of your add-in button. So in the Commands tab,
fi nd the ArcGISBook Category as shown in
Figure 6-8.

FIGURE 6-8

c06.indd 172c06.indd 172 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Maps and Layers In ArcObjects ❘ 173

 14. Select the Show Layers button from the Commands list and drag and drop it onto one of the
existing toolbars. Notice that while dragging the button, the mouse cursor has a small “x”
indicating that the current location of the cursor is not a valid place to drop the button. As you
put the mouse cursor over somewhere that can be used as the command container (such as any
toolbar or menu), the small “x” changes to a small “+” indicating that you can drop the button to
add it. Also, as you learned in Chapter 2, you can use the Add-In Manager in ArcMap
for this task.

 15. Add some layers to your map and test the functionality of the button. Figure 6-9 displays a map
containing some layers from the TemplateData.gdb fi le geodatabase that ships with ArcGIS.

FIGURE 6-9

How It Works

You used two properties of the Map class to iterate through the layers it contains. The Layers property
of the Map class is of type IEnumLayer. Generally speaking, Enums in ArcObjects are similar to Reader
objects in .NET. If you look at the code for reading a text fi le using a StreamReader object, you will
fi nd many similarities in how you write code.

 string oneLineOfData = sr.ReadLine();
 while (oneLineOfData != null)
 {
 //code to process a line of data goes here
 oneLineOfData = sr.ReadLine();
 }

You always use the following pattern in working with Enums.

//Initializing the Enum object
IEnumLayer enumLayer = map.Layers;
//Use the next method for getting the first item in the enum

c06.indd 173c06.indd 173 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

174 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

layer = enumLayer.Next();

//Using a while loop to iterate through all containing members
while (layer != null)
{
 //work with the members
 //use the Next() method to point to the next member
 layer = enumLayer.Next();
}

At this point, it seems that both methods of working with layers inside a map are equal. But this is not
the case when there is at least a group layer (GroupLayer CoClass) in the Data Frame. As you may
know, a group layer is a special kind of Layer subclass that can contain other layers (even other group
layers) and it is primarily used for organizing related layers. Compare Figure 6-9 with Figure 6-10 to
see the difference between the results of the two methods to access layers inside a map when there are
multiple group layers.

FIGURE 6-10

As you can see, by using the fi rst method (the LayerCount property) you can only access the fi rst
level layers. With the second method (by using the Layers property), you can access all layers. So it is
always more effi cient and safe to use the Layers property and IEnumLayer object to iterate through all
layers.

c06.indd 174c06.indd 174 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

General Properties of All Layers ❘ 175

NOTE If you want to use the Extending ArcObjects project template for the pre-
ceding Try It Out, you have to select the Class Library (ArcMap) item after select-
ing the Extending ArcObjects template. Then use the ArcGIS Project Wizard to
add the required ArcGIS references.

Visual Studio adds a new class fi le, but interestingly you don’t need the created
class fi le. Right-click on the project, and then select Add New Item from the Add
submenu. Next, select the Base Command component from the list of available
components when Extending ArcObjects has been chosen. Finally, choose the
Desktop ArcMap Command as the type of command to be created. That is it!

An Enum object in ArcObjects contains a group of similar items much like a generic collection stores
similar type objects in .NET. But the former has many subtle differences with all collections. Since
an Enum object just provides Next() and Reset() methods (and no properties), there is only one
way to access items inside an Enum object. But working with Enum objects is more effi cient than
working with arrays or collections in terms of memory consumption.

When an Enum is initialized, a pointer (which is controlled by the Enum object) is pointing above the
fi rst item in the Enum. As items are brought out of the Enum using the Next() method, the pointer
points to the successive position in the Enum. Later in this book, you will see that all Enum objects
have basically the same methods for working with contained items. There are several Enum interfaces
inside ArcObjects, each named after the type of object it contains. For example, IEnumLayer
contains ILayer objects and IEnumElement contains IElement objects. As the name suggests, the
Reset() method brings back the pointer above the fi rst item in the Enum.

GENERAL PROPERTIES OF ALL LAYERS

The ILayer interface is defi ned as the ultimate parent
class of all types of layers (Layer Abstract Class). As
a result, all types of layers are inherited by the ILayer
interface. In other words, all the members of the
ILayer interface can be seen in the Property window (the
last item when you right-click on a layer in the Table Of
Contents window) of all Layer types. At this point, you
just use the Name property of this interface. The ILayer
interface has more interesting properties than Name.
Figure 6-11 shows the properties of the ILayer interface.

As you can see, the fi rst property (AreaOfInterest)
defi nes the minimum bounding rectangle of the Layer
instance. This property is of type IEnvelope, which is defi ned in the Geometry library. All
geometry objects have an associated envelope that is defi ned by the XMin, XMax, YMin, and YMax
properties of the object. In fact, when you zoom into the specifi c layer or feature in ArcMap, you
are looking at the minimum bounding rectangle of that object. In other words, ArcMap sets the
minimum bounding box of the object as the extent of the main window of ArcMap.

FIGURE 6-11

c06.indd 175c06.indd 175 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

176 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

As mentioned previously in this chapter, the IActiveView interface that is implemented by the Map
CoClass controls all rendering operations in the main window of ArcMap. So if a code snippet
makes any change in the representation of geospatial data (in the main window of ArcMap), you
have to invoke the Refresh() method of the IActiveView interface. The following code can be
used to zoom into the selected layer in the Table Of Contents:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 //the following two lines of code are the same
 IActiveView activeView = mxdoc.ActiveView;
 //IActiveView activeView = mxdoc.FocusMap as IActiveView;

 //get the selected layer in TOC
 ILayer layer = mxdoc.SelectedLayer;

 //check if there is a selected layer or not
 if (layer != null)
 {
 activeView.Extent = layer.AreaOfInterest;
 //invoking Refresh method
 //results in redrawing the whole view
 activeView.Refresh();
 }

Note that the selected layer in the Table Of Contents might not be in the active Data Frame.

In addition to Name and AreaOfInterest, you can use the MinimumScale, MaximumScale,
ShowTips, and Visible properties to control the display of all types of layers. The following code
snippet fi nds the layer with the name of U.S. Cities and changes some of its display properties and
then makes all other layers invisible.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;

 for (int i = 0; i < map.LayerCount; i++)
 {
 if (map.Layer[i].Name.ToLower() == "u.s. cities")
 {
 ILayer usCities = map.Layer[i];
 usCities.Name = "Cities of the U.S";
 usCities.ShowTips = true;
 usCities.Visible = true;
 usCities.MaximumScale = 2500000;
 }
 else
 {
 map.Layer[i].Visible = false;
 }
 }
 IActiveView activeView = map as IActiveView;
 activeView.Refresh();
 mxdoc.UpdateContents();

The preceding code snippet changes the Table Of Contents window of ArcMap by modifying the
visibility of layers. So you have to call the UpdateContents() method of the IMxDocument
interface. The Table Of Contents window of ArcMap contains multiple tabs or contents views. The
fi rst contents view in the Table Of Contents window is the Display contents view. It lists layers based

c06.indd 176c06.indd 176 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

General Properties of All Layers ❘ 177

on their drawing order. You can access a specifi c contents view by using the get_ContentsView()
method of the IMxDocument interface. So as an alternative approach for refreshing the Display
contents view, you can use the following line of code:

mxdoc.get_ContentsView(0).Refresh(null);

In this case, you have to provide an index to get to the specifi c tab in the Table of Contents window
of ArcMap. As mentioned previously in this chapter, the Display tab is always the fi rst tab. Note
that using this approach just refreshes the specifi c tab in the Table of Contents window.

As previously mentioned, all types of layers implement the ILayer interface; as a result, all members
of this interface are available to them. If you explore the Carto object model, you can see that the
Layer Abstract Class has a few optional interfaces. Put simply, optional interfaces are the interfaces
that can be optionally implemented by subclasses such as ILayerGeneralProperties. As you can see
in Figure 6-12, optional interfaces are identifi ed by the word “Optional” in object model diagrams.

FIGURE 6-12

CartoObjectModel

Layer

ILayer

ILayerGeneralProperties

(Optional)

Any subclass that implements the optional interface lists it on an object model diagram. This way,
you can easily check the implementation of any optional interface by a specifi c class in ArcObjects.

ILayerGeneralProperties is a simple but useful interface that provides three properties for most
types of layers. Among the three properties, LayerDescription offers a lovely placeholder for
describing anything related to the layer. This property is more useful for saved layer fi les (*.lyr)
than for temporary in-memory Layer objects. The following code snippet uses this property to set
the opening time for the U.S. Cities layer:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IMap map = mxdoc.FocusMap;
for (int i = 0; i < map.LayerCount; i++)
{
 if (map.Layer[i].Name.ToLower() == “u.s. cities”)
 {
 ILayer usCities = map.Layer[i];
 ILayerGeneralProperties usGProperties = usCities as
 ILayerGeneralProperties;
 usGProperties.LayerDescription = “This layer is opened on:” +
 DateTime.Now.ToLongTimeString();
 }
}

Another interface which can be found on the Layer Abstract Class is IGeoDataset. This interface
is defi ned in the Geodatabase library and can be found in the Geodatabase object model diagram.
This is why its name is followed by esriGeoDatabase, as shown in Figure 6-13.

c06.indd 177c06.indd 177 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

178 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

FIGURE 6-13

CartoObjectModel

Layer

ILayer

ILayerGeneralDescription

(Optional)

esriGeodatabase.IGeoDataset

Using this interface, you can access the spatial reference of all layers. Consider the following code,
which writes some information regarding the spatial reference in the layer description fi eld of the
U.S. Cities layer.

 for (int i = 0; i < map.LayerCount; i++)
 {
 if (map.Layer[i].Name.ToLower() == "u.s. cities")
 {
 ILayer usCities = map.Layer[i];
 ILayerGeneralProperties usGProperties = usCities as
 ILayerGeneralProperties;

 IGeoDataset usGDSet = usCities as IGeoDataset;
 usGProperties.LayerDescription += " SRS of this layer is " +
 usGDSet.SpatialReference.Name;
 usGProperties.LayerDescription += "\r\n" +" Well known ID of
 this SRS is " + usGDSet.SpatialReference.FactoryCode;
}

NOTE Since the IGeoDataset interface is defi ned in the esriGeodatabase
library, you have to add that library to your project references. In addi-
tion, to avoid typing the fully qualifi ed name of this interface (ESRI.ArcGIS.
Geodatabase.IGeoDataset), you can take advantage of the using directive
(using ESRI.ArcGIS.Geodatabase).

Also you can use the IGeoDataset interface to zoom into a specifi c layer using its Extent property,
as shown in the following snippet. As you may guess, there are several methods to do the same task
in ArcObjects.

activeView.Extent = usGDSet.Extent;

So far you have seen how easy it is to use the ILayer, IGeneralProperties, and IGeoDataset
interfaces. Also you have learned about optional interfaces as an additional tip on reading object
model diagrams. In general, ILayer is a standard interface to work with all layer types. However,
the ILayer interface is superseded by the ILayer2 interface. This means if you want your
ArcObjects code to work with future versions of ArcGIS, you have to consider working with the
ILayer2 interface instead of ILayer. In addition to all the members of the ILayer interface,
the ILayer2 defi nes a property (ScaleRangeReadOnly) that indicates whether or not the scale

c06.indd 178c06.indd 178 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with FeatureLayers ❘ 179

range properties are read-only. Besides, the AreaOfInterest property of the ILayer2 interface is a
two-headed barbell, which means it is a read and write property.

In contrast to ILayer, ILayer2 is not defi ned on the Layer Abstract Class. Quite the contrary, it
is implemented directly by most Layer types, such as RasterLayer and FeatureLayer CoClasses.
An interesting fact about the ILayer2 interface is that it is not implemented for all layer types. For
example, if you deal with KMLLayer (in the GlobeCore library) and WCSLayer (in the Carto library)
you can see that the ILayer2 interface is not implemented for these two layer types.

WORKING WITH FEATURELAYERS

FeatureLayers are one of the most common types of layers in ArcGIS. A FeatureLayer points
to vector data of the same geometry type (point, polyline, polygon, and so forth) in a single spatial
reference system and with a common set of attributes. A FeatureLayer is based on a vector-based
dataset that is called a FeatureClass. Examples of FeatureClasses are Shapefiles and
Feature Classes in a Geodatabase. Figure 6-14 illustrates the detailed inheritance hierarchy
for a FeatureLayer CoClass. As you might expect, all the interfaces of all parent classes in this
hierarchy are implemented by the FeatureLayer CoClass; as a result, all the interfaces are available
for use.

FIGURE 6-14

Layer

DataLayer DisplayLayer

TableLayer

FeatureLayerBase

FeatureLayer

ILayerFields

IFeatureLayer2

IGeoFeatureLayer

CartoObjectModel

c06.indd 179c06.indd 179 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

180 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

In previous versions of ArcObjects, the IFeatureLayer was the main interface for working
with general aspects of FeatureLayer instances. In the current version of ArcObjects,
the IFeatureLayer interface is superseded by IFeatureLayer2. As you might expect,
IFeatureLayer2 provides all members of the IFeatureLayer interface as well as a method and
a read-only property — ShapeType. The ShapeType property is of type esriGeometryType
enumeration. This enumeration is defi ned in the Geometry library of ArcObjects and contains 20
distinct types of geometry that can be used to construct a geometry object.

As the name implies, the ILayerFields interface that is defi ned by the TableLayer Abstract
Class provides an easy way to access fi elds of table-based layers. This interface provides the
FieldCount property, which indicates the number of fi elds or columns inside the attribute table
of a FeatureLayer. In addition to FieldCount, it provides Field and FieldInfo properties to
access the columns at a specifi ed index. The Field class is defi ned in the Geodatabase library. As
a result, if there is a need to use the Field object (for example, using the Field property of the
ILayerFields interface) the Geodatabase reference must be added to the project.

The IGeoFeatureLayer interface provides access to rendering properties for FeatureLayers. If you
look at the IGeoFeatureLayer interface in a Carto object model diagram or examine it with ILSpy
or Refl ector, you will notice that this interface inherits from IFeatureLayer. In the following Try It
Out, you inspect the general properties of FeatureLayers.

TRY IT OUT Inspecting General Properties of FeatureLayers
(FeatureLayerInspector.zip)

 1. Open the LayersOfMaps add-in solution that you created in a previous Try It Out. In the Solution
Explorer window of Visual Studio, right-click on the project and choose New Item from the Add
menu.

 2. Expand the Visual C# Items ➪ ArcGIS node in the Add New Item window, click Desktop
Add-Ins, and choose the add-in component item. Name the component FeatureLayerInspector,
and then click the Add button.

 3. In the ArcGIS Add-Ins Wizard, choose Button as the type of add-in if it was not chosen already
for you and change its caption to something meaningful like General Properties of FeatureLayers.
As a convention for this book, set the Category of the add-in as ArcGISBook. Provide an image
for your button and change its tooltip to some useful text. Finally, click the Finish button.

c06.indd 180c06.indd 180 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with FeatureLayers ❘ 181

 4. Visual Studio adds the necessary lines of code for the newly added component to the projects.
As always in ArcObjects programming, the fi rst step is to add necessary references and using
directives. Because you want to use the classes in the Carto namespace, you have to add this
ArcGIS reference to your project. Fortunately, you added this reference in the previous Try It Out.
Because you want to take advantage of the ShapeType property of IFeatureLayer2 and the
Field property of ILayerFields, in addition to the Carto namespace you have to add references
for the Geometry and Geodatabase libraries, respectively. So right-click on the References folder
in Solution Explorer and select the Add ArcGIS Reference item.

 5. In the Add ArcGIS Reference window, expand the Desktop ArcMap tree, and select the ESRI
.ArcGIS.Geometry item. Then click Add. Do the same for the ESRI.ArcGIS.Geodatabase item.
Click Finish.

 6. Add the following lines of code on top of the class fi le of your newly added add-in button
(FeatureLayerInspector.cs) to make your life a little bit easier.

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.Geometry;

 7. You want to report the general properties of the selected FeatureLayer in the Table Of Contents
window. In addition, you want to make use of the labeling feature of ArcMap in its simplest form
using IGeoFeatureLayer. So add the following code in the OnClick() method of the newly
added button in the FeatureLayerInspector.cs fi le:

 string data = "";
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 ILayer selectedLayer = mxdoc.SelectedLayer;

 if (selectedLayer != null)

FIGURE 6-15

c06.indd 181c06.indd 181 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

182 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

 {
 if (selectedLayer is IFeatureLayer2)
 {
 //using IFeatureLayer2 interface
 IFeatureLayer2 selectedFL = selectedLayer as IFeatureLayer2;
 data += "Data Source Type: " + selectedFL.DataSourceType + "\n";
 data += "Shape Type: " + selectedFL.ShapeType + "\n";
 data += "Is Selectable? " + selectedFL.Selectable + "\n";
 data += "Primary Display Field: " + selectedFL.DisplayField + "\n";

 //using ILayerFields interface
 ILayerFields selectedLayerFields = selectedFL as ILayerFields;
 data += "field count: " + selectedLayerFields.FieldCount + "\n";
 data += "Third Field Name: " + selectedLayerFields.Field[2].Name;

 //using IGeoFeatureLayer interface
 IGeoFeatureLayer selectedGFL = selectedFL as IGeoFeatureLayer;
 //toggle labeling for selected layer
 if (selectedGFL.DisplayAnnotation == true)
 {
 selectedGFL.DisplayAnnotation = false;
 }
 else
 {
 selectedGFL.DisplayAnnotation = true;
 }

 //since you modify rendering of the map by toggling labeling
 //you have to refresh the main window of ArcMap
 mxdoc.ActiveView.Refresh();

 Message msgForm = new Message();
 msgForm.lbl.Text = data;
 msgForm.ShowDialog();
 }

 }

 8. Run your code and then use the Customize window in ArcMap to add your new button to
somewhere pertinent and test the button’s functionality. Select a layer in the Table Of Contents
window and click the button to see some properties of the layer.

How It Works

You used the SelectedLayer property of the IMxDocument interface to get to the single selected layer
in the Table Of Contents window. Because it is possible that the selected item in the Table Of Contents
window is not of type layer, you have to check the SelectedLayer property against the null value.

To see whether or not the SelectedLayer is of type IFeatureLayer2, you used the is operator. In
other words, to check the implementation of the IFeatureLayer2 interface by the SelectedLayer
object (is it an instance of the FeatureLayer CoClass or not?) you employed the is operator.

c06.indd 182c06.indd 182 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with RasterLayers ❘ 183

The interesting part of the code is the labeling part. As you see in the code, you didn’t specify a fi eld for
labeling. In this case, the primary display fi eld is used to make labels. The primary display fi eld is the
fi rst string fi eld that contains the literal name in its name (such as StateName, CountyName, and name).
If no string fi eld contains the literal name, the fi rst string fi eld is specifi ed as the primary display fi eld.

The FeatureClass property of IFeatureLayer2 or the obsolete IFeatureLayer interfaces are the
gate to access geospatial data represented by a FeatureLayer. You see this property in action in the
next chapters.

WORKING WITH RASTERLAYERS

The other most common type of layer in ArcGIS is RasterLayer. All RasterLayers are represented
as a two or more dimensional matrix of pixels of a RasterDataset. Each pixel in a RasterLayer
contains a value that represents an average (or near average) value of a phenomenon covered by that
pixel-like pollution, temperature, and refl ection. Raster geospatial data comes from all kinds of
photogrammetry and remote sensing resources as well as scanned paper documents like paper maps.
Like FeatureLayer, RasterLayer has a long inheritance hierarchy (see Figure 6-16).

FIGURE 6-16

Layer

DataLayer DisplayLayer

TableLayer

RasterLayer

ILayerFields

IRasterLayer

CartoObjectModel

c06.indd 183c06.indd 183 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

184 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

You can access general aspects of a RasterLayer using the IRasterLayer interface. The
following code snippet performs a simple assessment for RasterLayers in the same way that the
FeatureLayerInspector class does inspection for FeatureLayers.

 string data = "";
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 ILayer selectedLayer = mxdoc.SelectedLayer;

 if (selectedLayer != null)
 {
 if (selectedLayer is IRasterLayer)
 {
 IRasterLayer selectedRL = selectedLayer as IRasterLayer;
 data += "Number of Bands: " + selectedRL.BandCount + "\n";
 data += "Number of Columns: " + selectedRL.ColumnCount + "\n";
 data += "Number of Rows: " + selectedRL.RowCount + "\n";
 data += "File Path: " + selectedRL.FilePath + "\n";
 data += "Is Pyramid Created? " + selectedRL.PyramidPresent;

 Message msgForm = new Message();
 msgForm.lbl.Text = data;
 msgForm.ShowDialog();
 }
 }

To make use of this code, add another add-in button to your project and insert the preceding code
into the newly added button’s OnClick() method. To test the functionality of the code you can add
an existing raster fi le to your map or download a satellite image from the web. The Earth Resources
Observation and Science Center (EROS) of the USGS provides free satellite imagery for all around
the world (http://glovis.usgs.gov/).

Same as the FeatureClass property of IFeatureLayer, the Raster property of IRasterLayer is
the central gate to explore geospatial data behind this kind of layer. In other words, you get to the
pixels that comprise the RasterDataset using the Raster property of the IRasterLayer interface.

ADDING AN EXISTING *.LYR FILE TO A MAP

As mentioned previously in this chapter, Layer instances can be saved as *.lyr fi les. Before
discovering how to save layers of a map, you will explore the necessary steps for adding an existing
*.lyr fi le to a map. The classes for adding existing *.lyr fi les are defi ned in the Catalog library of
ArcObjects. Figure 6-17 illustrates a simplifi ed object model diagram for this task.

c06.indd 184c06.indd 184 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://glovis.usgs.gov/
http://www.it-ebooks.info/

Adding an Existing *.lyr File to a Map ❘ 185

NOTE Everything related to ArcMap in ArcObjects contains the literal Mx, such
as IMxDocument or IMxdContents. In turn, everything related to ArcCatalog has
Gx in its name, such as IGxCatalog and GxObject. Sx and GMx play the same
role for ArcScene and ArcGlobe, respectively. Regarding the explained theme,
Figure 6-17 is part of the ArcCatalog and Catalog object model diagrams.

For the time being, you need to concentrate on the right half of Figure 6-17. Items in the Catalog
tree of ArcCatalog (which is available in ArcMap as well as ArcScene and ArcGlobe) represent
multiple items such as fi les, disk connections, datasets, and so on. All the mentioned items are
programmatically accessible by distinct and concrete subclasses of the GxObject Abstract Class
such as GxFile and GxLayer.

For adding an existing *.lyr fi le to a map, an instance of IGxLayer must be used. The IGxLayer is
defi ned by the GxLayer CoClass, so in order to instantiate it, use the following line of code:

FIGURE 6-17

ArcCatalogObjectModel

CatalogObjectModel

GxObject*

GxObjectFileProperties

GxFile

IGxFile

GxSelection

IGxSelection

GxMap

GxLayer

IGxFile

IGxLayer

Application

IGxApplication

GxCatalog

IGxCatalog

c06.indd 185c06.indd 185 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

186 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

 IGxLayer gxLayer = new GxLayerClass();

In addition to the IGxLayer, the GxLayer CoClass implements the IGxFile interface. The IGxFile
interface has a Path property that can be used to specify the physical path of any *.lyr fi le. The
following code explains all the steps for adding an existing *.lyr fi le to an active Data Frame:

 //creating a new IGxLayer instance
 IGxLayer gxLayer = new GxLayerClass();
 //cast the interface to IGxFile to
 //be able to use the Path property
 IGxFile gxFile = gxLayer as IGxFile;
 gxFile.Path = @"C:\cities.lyr";

 //make use of the Layer property of the IGxLayer instance
 ILayer layer = gxLayer.Layer as ILayer;

 if (layer != null)
 {//Add the layer to FocusMap

 //first method using IMxDocument
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 mxdoc.AddLayer(layer);

 //second method using IMap
 //IMap map = mxdoc.FocusMap;
 //map.AddLayer(layer);

 //update main window and TOC
 mxdoc.ActiveView.Refresh();
 mxdoc.UpdateContents();
 }

NOTE In order to run the preceding code, the ESRI.ArcGIS.Catalog and ESRI
.ArcGIS.SystemUI references and corresponding using directives must be
added to the project.

As a related topic, it is also an easy task to open an existing *.mxd fi le using the OpenDocument()
method of the Application property of the ArcMap static class.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 string mapPath = @"C:\usa.mxd";
 ArcMap.Application.OpenDocument(mapPath);

ADDING *.LYR FILES USING GXDIALOG

Users of ArcGIS for Desktop applications often utilize the Add Data button as the fi rst step to
make use of geospatial and tabular datasets. Behind the scenes, the Add Data button initializes
an AddDataDialog CoClass object and calls its Show() method. Figure 6-18 displays the small
hierarchy of the AddDataDialog CoClass.

c06.indd 186c06.indd 186 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adding *.lyr Files Using GxDialog ❘ 187

The following code shows the result of pressing the Add Data button:

 IAddDataDialog2 addDataDialog = new AddDataDialogClass();
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 addDataDialog.Document = mxdoc;
 addDataDialog.Map = mxdoc.FocusMap;

 addDataDialog.Show(ArcMap.Application.hWnd, true);

All the properties of IAddDataDialog have to be set before calling the Show() method; otherwise,
ArcGIS for Desktop applications will throw an exception.

Another important tip about the preceding code is the use of the hWnd property of the Application
static property. Simply put, hWnd is an integer number that represents the window handle of an
application in which the add-in is going to be executed. Think of it as a unique identifi er of the
executing application (for example, ArcMap). Sometimes your code needs to know this number to
make the Windows kernel aware of the target application. You see this property several times in
ArcObjects programming, especially when you want to open a window from within an ArcGIS for
Desktop application.

NOTE The IAddDataDialog interface and AddDataDialog CoClass are defi ned
inside the ArcMapUI library. So make sure that you add the ESRI.ArcGIS
.ArcMapUI reference to the project and its corresponding using directives in
the code.

With the preceding code, users can select and add all supported data types to ArcGIS for Desktop
applications. As always, developers need fl exibility (for example, to permit users just to select

FIGURE 6-18

AddDataDialogBase

AddDataDialog

IAddDataDialog2

ArcMapUIObjectModel

c06.indd 187c06.indd 187 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

188 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

one type of geospatial resource). In order to achieve that objective, developers should consult the
Catalog and CatalogUI object model diagrams to fi nd the required classes. Figure 6-19 illustrates a
simplifi ed view of the required classes.

FIGURE 6-19

CatalogObjectModel

GxObject

GxObjectFileProperties

*

GxLayer

Application

GxCatalog

GxSelection

GxFile

EnumGxObject

GxObjectFilter

GxFilterFeatureClasses

GxDialog

GxFilterLayers

GxFilterMaps

CatalogUIObjectModel

ArcCatalogObjectModel

c06.indd 188c06.indd 188 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Adding *.lyr Files Using GxDialog ❘ 189

A central class in the diagram shown in Figure 6-19 is the GxDialog CoClass, which represents
a dialog box for adding all kinds of geospatial resources. This class may have a fi lter object of
type GxObjectFilter. The GxObjectFilter Abstract Class has as many concrete subclasses
as the number of geospatial data types and datasets that ArcGIS can work with (and even
more). For example, GxFilterMaps is for showing only those fi les with an .mxd extension and
GxFilterTextFiles is for fi ltering out all fi les except *.txt fi les.

The GxDialog CoClass is associated with the GxCatalog CoClass by its InternalCatalog
property. The GxCatalog CoClass represents the actual tree of geospatial data and resources.
Among all the capabilities of the GxCatalog class, because this CoClass implements IGxObject and
IGxObjectContainer interfaces it can contain other GxCatalog instances. It also can be contained
by other GxCatalog instances. A fi le geodatabase which contains some feature classes, a folder full
of shapefi les, and a toolbox with a set of geoprocessing tools are all GxCatalog instances.

Through the GxSelection CoClass, selected GxObjects of a GxCatalog instance can be accessed.
As you have seen before, GxFile and GxLayer are two subclasses of the GxObject Abstract Class.

The GxSelection CoClass instantiates EnumGxObject to iterate through all selected GxObjects in
a GxCatalog.

That is it! At fi rst it seems quite complicated but it isn’t. In the following Try It Out, you build a
button for showing a native ArcGIS Desktop window that restricts users to selecting and adding
only *.lyr fi les.

TRY IT OUT Adding *.lyr Files Using GxDialog CoClass (UsingAddDataDialog.zip)

 1. Open the LayersOfMap solution. Add a new add-in component by choosing the add-in
component item in the Add New Item window. Name this component ShowAddDialog.

 2. In the Add-Ins Wizard, select Button as the type of add-in if it was not chosen already for you.
Change its caption to Show Add Dialog and its category to ArcGISBook. It is a good idea to
provide an image for your add-in. Click the Finish button.

 3. Required classes for the task at hand are inside the Catalog and CatalogUI libraries, so you need
to add ESRI.ArcGIS.CatalogUI and ESRI.ArcGIS.Catalog references to your project by right-
clicking the project in Solution Explorer and choosing Add ArcGIS Reference. Then as always
when adding references, you need to add the necessary using directives. So add the following
lines of code to the newly added class of your add-in button:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.CatalogUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Catalog;

 4. You need to create an instance of GxDialog to access its IGxDialog interface. Because GxDialog
is a CoClass, you can use the new operator to create an instance of it. Also you can change its
capability to select single or multiple items at once using the AllowMultiSelect property. So add
the following code in the OnClick() method of the ShowAddDialog class:

c06.indd 189c06.indd 189 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

190 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

 IGxDialog gxd = new GxDialogClass();
 gxd.AllowMultiSelect = true;
 gxd.ButtonCaption = "Add Layer";
 gxd.Title = "Add Layer Window";
 gxd.RememberLocation = true;

 5. The next step is to create an appropriate GxObjectFilter subclass and associate it with the
GxDialog instance. Because you want to allow users to see only *.lyr fi les, you must make an
instance of the GxFilterLayersClass CoClass.

 IGxObjectFilter gxObjFilter = new GxFilterLayersClass();
 gxd.ObjectFilter = gxObjFilter;

 6. At this point, the GxDialog instance is ready to be displayed for users. Use the DoModalOpen()
method of the IGxDialog interface to show the form as a modal window. This method needs
two parameters. The fi rst one is the handle of the parent application, and the second one is an
output parameter of type IEnumGxObject. Remember that you need to use the out keyword
for output parameters.

 IEnumGxObject gxEnumObj;
 gxd.DoModalOpen(ArcMap.Application.hWnd, out gxEnumObj);

The rest of the code is for working with the enum object (IEnumGxObject instance) and adding
layers to the map one by one. The following code is the complete OnClick() method of the add-in
button:

 protected override void OnClick()
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;

 //Setting some properties for GxDialog instance
 IGxDialog gxd = new GxDialogClass();
 gxd.AllowMultiSelect = true;
 gxd.ButtonCaption = "Add Layer";
 gxd.Title = "Add Layer Window";
 gxd.RememberLocation = true;

 //creating filter for GxDialog instance
 IGxObjectFilter gxObjFilter = new GxFilterLayersClass();
 gxd.ObjectFilter = gxObjFilter;

 //Adding each selected layer to map
 IEnumGxObject gxEnumObj;
 gxd.DoModalOpen(ArcMap.Application.hWnd, out gxEnumObj);

 IGxObject gxObj = gxEnumObj.Next();
 while (gxObj != null)
 {
 IGxLayer gxlayer = gxObj as IGxLayer;
 mxdoc.AddLayer(gxlayer.Layer);
 gxObj = gxEnumObj.Next();
 }
 //refreshing the main window and TOC
 mxdoc.ActiveView.Refresh();
 mxdoc.UpdateContents();
 }

c06.indd 190c06.indd 190 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Saving *.lyr and *.mxd Files ❘ 191

 7. Run the code in Visual Studio. Test the functionality of this button in ArcMap to add some *.lyr
fi les to the active Data Frame. Remember, in order to make use of the button, you need to use the
Customize window and place the button on some toolbar or menu.

How It Works

Using this code, you can take advantage of the native ArcGIS window and also require users to select
the specifi c fi le type. With simple modifi cation, you can use the preceding code to add different geospa-
tial resources. For example, the following line of code requires the user to add FeatureClass datasets
such as shapefi les and feature classes inside geodatabases:

IGxObjectFilter gxObjFilter = new GxFilterFeatureClasses();
 gxd.ObjectFilter = gxObjFilter;

In this Try It Out, you used the out keyword to create a new instance of the IEnumGxObject interface.
This keyword and its use are explained in Chapter 4. You might want to quickly review Chapter 4, just
to make sure you understand this.

SAVING *.LYR AND *.MXD FILES

As discussed in Chapter 5, the Application in the add-ins template and m_application in the
Extending ArcObjects template act as the central points where access is gained to other types in the
ArcObjects system. Both entry gates point to the IApplication interface. This interface represents
all the ArcGIS for Desktop applications. The IApplication interface has several self-explanatory
methods for working with *.mxd fi les. Table 6-1 summarizes most of them.

TABLE 6-1: Methods of the IApplication Interface

NAME OF METHOD PURPOSE

NewDocument() Closes the current document and creates a new one. Has the same

eff ect as pressing the New Map File button. Two optional parameters

can be supplied for this method. The fi rst optional input parameter

is used for showing the New Document Dialog to allow users to

select a template. The second input parameter is used when the fi rst

parameter is set to true and is for specifying the path of a template fi le

that will be the base for the new document.

OpenDocument() As the name suggests, it opens a saved *.mxd fi le when the path of

the *.mxd fi le is supplied. Otherwise, the Open dialog is displayed

(same eff ect as pressing the Open button).

Save() Saves the changes of an opened *.mxd fi le. Calling this method

without specifying an input path parameter displays the Save As

window.

continues

c06.indd 191c06.indd 191 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

192 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

NAME OF METHOD PURPOSE

SaveAsDocument() Saves the current open *.mxd fi le as a diff erent *.mxd fi le and opens

the newly created *.mxd fi le. This method has two optional input

parameters. The fi rst parameter specifi es the path of the new *.mxd

fi le. Invoking this method without specifying the fi rst input path

parameter displays the Save As window.

Setting the second parameter as true saves the open map document

(in-memory or *.mxd) to an *.mxd fi le but doesn’t open a newly

created *.mxd fi le.

It is a good idea to have some simple metadata in the *.mxd fi le before saving it. As shown in the
following code, by using the IDocumentInfo2 interface it is possible to provide information such
as Name, Author, Description, and other fi elds that can be found in the Map Document Property
window of all ArcGIS for Desktop applications.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IDocumentInfo2 docInfo = mxdoc as IDocumentInfo2;
 docInfo.Author = "pouria amirian";
 docInfo.Comments += "Last Saved in " + DateTime.Now.ToLongTimeString()
 + "\r\n";
 docInfo.Subject = "Persian Gulf in Middle East";
 docInfo.RelativePaths = true;

 ArcMap.Application.SaveAsDocument(@"c:\PersianGulf.mxd");

Figure 6-20 illustrates the results of this code snippet.

FIGURE 6-20

TABLE 6-1 (continued)

c06.indd 192c06.indd 192 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Saving *.lyr and *.mxd Files ❘ 193

For saving *.lyr fi les, you resort to the LayerFile CoClass that can be found in the Carto object
model diagram (See Figure 6-21).

FIGURE 6-21

CartoObjectModel

Layer

1..1

LayerFile

ILayerFile

The LayerFile CoClass has the members required for
read and write operations on in-memory and physical
(saved on disc) Layer instances. The primary interface
of the LayerFile CoClass is ILayerFile, illustrated in
Figure 6-22.

The Layer property of the ILayerFile interface is a
read-only property. In order to create a *.lyr fi le, a call
to the New() method has to be made. ReplaceContent()
then must be invoked to set the Layer instance as the
content of the *.lyr fi le. The following code snippet
iterates through all Layer instances inside the active Data
Frame and saves only the FeatureLayer instances:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayerFile layerFile = new LayerFileClass();

 ILayer layer = enumLayer.Next();
 while (layer != null)
 {
 if (layer is IFeatureLayer)
 {
 try
 {
 string layerPath = @"D:\" + layer.Name;
 if (!layer.Name.Contains(".lyr"))
 {
 layerPath += ".lyr";
 }
 layerFile.New(layerPath);
 layerFile.ReplaceContents(layer);
 layerFile.Save();
 }
 catch (Exception ex)

FIGURE 6-22

c06.indd 193c06.indd 193 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

194 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

 {
 MessageBox.Show(ex.Message, ex.Source);
 }
 }
 layer = enumLayer.Next();
 }

Also, it is possible to use the IGxFile and IGxLayer interfaces to save *.lyr fi les; you can try this
on your own if you are interested.

WARNING The name of the *.lyr fi les must not contain certain alphanumeric
characters such as \, |, or ". To be safe, you can check the names of layers
against the mentioned characters.

SUMMARY

In this chapter, you learned how to access maps and layers using various classes in ArcObjects. You
used your knowledge of reading object model diagrams to navigate through thousands of types to
perform simple tasks.

Performing simple tasks and playing with classes is most effective for learning a new topic like
ArcObjects. As you have seen often, many ArcObjects types are involved in performing simple
tasks.

This chapter described the process of working with Enum instances. You will see more about Enums
in upcoming chapters. In addition, this chapter illustrated some ways to read and modify the
properties of all kinds of layers. The FeatureLayer and RasterLayer classes are explained briefl y
as another topic of this chapter. Saving and adding *.lyr fi les was the fi nal topic of this chapter.

This chapter focused on only one type of component that can be added to ArcGIS for Desktop
applications: the Button add-in (or Desktop ArcMap Command, as it is called in the Extending
ArcObjects template in Visual Studio). You will see other types of components that can be added to
ArcGIS for Desktop applications later in this book.

Working with maps and layers is the most basic task in ArcObjects programming. By reading this
chapter, you have cleared the fi rst hurdle in learning ArcObjects. Well done, but there are many
other hurdles on your way to becoming a true ArcObjects programmer. The rest of this book will
help put you on the track to success.

c06.indd 194c06.indd 194 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 195

EXERCISES

 1. Why can’t the foreach construct be used in ArcObjects programming?

 2. What is the diff erence between using the LayerCount property and using the Layers property

to access layers inside a map?

 3. What is the main interface for working with a layer that is created after adding a polygon

shapefi le to a map?

 4. What interface should be used to provide simple metadata for *.mxd and *.lyr fi les?

 5. How can you access the active Data Frame when there is more than one Data Frame inside the

Table Of Contents window?

You will fi nd the answers to these exercises in this book’s appendix.

c06.indd 195c06.indd 195 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

196 ❘ CHAPTER 6 ACCESSING MAPS AND LAYERS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Optional interface Optional interfaces are the interfaces that are optionally

implemented by subclasses of a parent class, such as the

ILayerGeneralProperties interface of the Layer Abstract Class.

Pattern for working

with Enums

First step: Initialize the Enum.

Second step: Use the Next() method of the Enum to point to the fi rst

item inside it.

Third step: Use a while block to access all items inside the Enum. See

the following code:

//Initializing the Enum object
IEnumLayer enumLayer = map.Layers;
//Use the next method for getting the first item
in the enum
layer = enumLayer.Next();

//Using a while loop to iterate through all
containing members
while (layer != null)
{
 //work with the members
 //use the Next() method to point to the next
member
 layer = enumLayer.Next();
}

Zoom to selected

layer in the Table Of

Contents window

IMxDocument mxdoc = ArcMap.Application.Document
as IMxDocument;

IActiveView activeView = mxdoc.ActiveView;

ILayer layer = mxdoc.SelectedLayer;
 if (layer != null)
 {
activeView.Extent = layer.AreaOfInterest;
//alternative method
//IGeoDataset GDSet = layer as IGeoDataset;
//activeView.Extent = GDSet.Extent;

activeView.Refresh();
 }

c06.indd 196c06.indd 196 25/02/13 4:18 PM25/02/13 4:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Tables
and FeatureClasses

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Exploring object model diagrams for data access and creation

 ➤ Adding and deleting existing fi elds

 ➤ Adding FeatureClasses, tables, and rasters to a map

 ➤ Creating new tables

 ➤ Filling tables with rows

 ➤ Using the family of Name objects

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442548 on the Download Code tab. The code is in the Chapter07 folder and
is individually named according to the names throughout the chapter.

The fi rst part of this chapter discusses how to access tables and FeatureClasses inside a
map. You learn how to create new fi elds and delete existing fi elds. In the second part of the
chapter, you explore the classes for adding various datasets (such as FeatureClasses in
fi le geodatabases or ArcSDE geodatabases, tables, and rasters) to a map. At the end of this
chapter, you look at the topic of creating tables and records.

ACCESSING TABLES AND FEATURECLASSES

Vector-based geospatial data are one of the most widely used types of geospatial data (if not
the most). Geospatial data have two elements: geometry and attribute. Different vector-based
geospatial data store these two elements in various ways. There are quite a lot of formats and

7

c07.indd 197c07.indd 197 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442548
http://www.wrox.com/remtitle.cgi?isbn=1118442548
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

198 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

models for storage of vector-based geospatial data. Some of them store both elements in the same
place (as in the case of spatial DBMS), and some of them use two (and more) different fi le structures
for storing geometry and attributes of vector geospatial data (as in the case of a georelational model).

As an ArcGIS programmer, you often access geospatial data through a geodatabase model.
Put simply, developers don’t care about the format and model of storage of geospatial data. As
you will see shortly, you access all geospatial data in the same way and independent of storage
format and model. In fact, this is one of the promises of ArcObjects as an object-oriented system.
(Polymorphism is explained in detail in Chapter 4).

The attribute table of vector geospatial data and tabular data that can be used in the ArcGIS
platform plays an important role in all aspects of working with geospatial data, such as
geoprocessing and visualization, just to name two. Additionally, geodatabase models provide ways
to extend the capabilities of tables. Using the attribute domain to provide integrity and to take
advantage of relationship classes to build traditional relationships of relational models are just two
ways to make more effi cient tables.

Figure 7-1 illustrates some classes for working with vector geospatial data and tabular data.

FIGURE 7-1

IFeatureLayer2
IMap

Map

ITableCollection

FeatureLayer

CartoObjectModel

GeodatabaseObjectModel

IDataset

IClass

Dataset

IFields2

IFieldsEdit

Fields

IField2

IFieldEdit2

Field

Table

IDataset: IUnknown

IClass: IUnknown

ITable:IClass ITable

IObjectClass IObjectClass: IClass

ObjectClass

IFeatureClass IFeatureClass: IObjectClass

FeatureClass

1

*

..

c07.indd 198c07.indd 198 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 199

The core class of the geodatabase object model is the Dataset Abstract Class. It is a generic
class with generic interfaces. A FeatureClass, a RasterClass, a FeatureDataset,
a RelationshipClass, and a Table are concrete examples of a Dataset.

Let’s see how you can access actual data behind a FeatureLayer inside a map. A FeatureClass
behind a FeatureLayer can be accessed using the FeatureClass property of the IFeatureLayer2
interface (or the IFeatureLayer interface).

 IFeatureLayer2 featureLayer = layer as IFeatureLayer2;
 IFeatureClass fc = featureLayer.FeatureClass;

As shown in Figure 7-1, a FeatureClass is a type of Table. In fact, you can think of a
FeatureClass as a Table that has a special capability to store the geometry of records or rows.

A Table inside a Map can be accessed using the ITableCollection interface of the Map CoClass.
A Table instance contains a set of columns that are programmatically accessible through the
Fields property. This property is of type Fields CoClass. The Fields CoClass has two major
interfaces: IFields2 and IFieldsEdit. As you may guess, these two interfaces have the same
set of properties; however, in the IFields2 interface all properties are read-only, while in the
IFieldsEdit interface all properties are write-only.

IFields2 fields = table.Fields;

A Fields instance has a one-to-many relationship with the Field CoClass. The relationship
between the Fields and Field CoClasses is similar to the relationship between the Map and Layer
classes. In other words, the Fields CoClass has FieldCount and Field properties (which are like
the LayerCount and Layer properties) to iterate through all fi elds.

 for (int i = 0; i < fields.FieldCount; i++)
 {
 IField2 field = fields.Field[i];
 //code for work with each field instance
 }

The Field CoClass represents a single column in the table that has Name and Type among its useful
properties. As with the Fields CoClass, the Field CoClass has two major interfaces. In this case,
both interfaces have almost the same members but IField2 provides read-only properties whereas
IFieldEdit2 offers the same properties as write-only. In the next Try It Out, you create a simple
schema reporter add-in. In brief, a schema in geodatabase terminology is the structure or design
of a geodatabase or geodatabase object, such as a table, or a feature class. The resulting add-in
can report some properties on all columns of a selected table or FeatureLayer inside the Table Of
Contents window of ArcMap.

c07.indd 199c07.indd 199 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

200 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

TRY IT OUT Simple Schema Reporter (SchemaReporter.zip)

 1. Create a new project in Visual Studio. For the last time in this book, be sure that you selected
.NET Framework 3.5 as the target platform. Click on the Desktop Add-Ins template and select
the ArcMap Add-in. Name your add-in something meaningful like SimpleSchemaReporter and
click the OK button.

 2. As always, provide your information and click Next in the ArcGIS Add-Ins Wizard. Select Button
as the type of add-in and set other fi elds, as shown in Figure 7-2.

FIGURE 7-2

 3. Add the ESRI.ArcGIS.Carto and ESRI.ArcGIS.Geodatabase references to your project. Then
write the following, using directives at the top of the SimpleSchemaReporter.cs code window:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geodatabase;

 4. You want to report just some properties of columns of the selected table or FeatureLayer inside
the Table Of Contents window. For this reason, you are going to create a lightweight class for
storing properties of Field instances. Later you take advantage of the generics feature of .NET
and populate a List of these lightweight objects.

So right-click on the project and from the Add submenu, select the Class item. As shown in
Figure 7-3, name the class fldClass and click Add.

c07.indd 200c07.indd 200 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 201

 5. fldClass.cs is an information package class for storing data such as Name, Alias, Length, and
FieldType for Field objects. It has a handful of properties just to provide a group of related
information for a specifi c Field. The contents of your fldClass.cs fi le should be similar to
the following code listing. Note that because you use the esriFieldType enumeration as the
type of FieldType property, you have to add a reference to a geodatabase library (and write the
corresponding using directives), which you have done in previous steps for the other class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ESRI.ArcGIS.Geodatabase;

namespace SimpleSchemaReporter

{
 class fldClass
 {
 public int No
 { get; set; }

 public string AliasName
 { get; set; }

 public string Name
 { get; set; }

 public esriFieldType FieldType
 { get; set; }

FIGURE 7-3

c07.indd 201c07.indd 201 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

202 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

 public int Length
 { get; set; }

 public bool IsRequired
 { get; set; }

 public bool IsNullable
 { get; set; }

 public fldClass(int No)
 { this.No = No; }
 }
}

 6. Add a new Windows Form to your project by right-clicking the project in the Visual Studio
Solution Explorer window and selecting Windows Form from the Add submenu. Name it
frmGrid, then click the Add button. This form is used to show the schema of all fi elds inside a
grid.

 7. Modify the ShowInTaskBar property of the form to False. Change the size of frmGrid to 726;
266. Add a DataGridView control to the form. You can fi nd the DataGridView control in the
Data or All Windows Forms categories of the Toolbox window. Change the properties of
the added DataGridView as indicated in Table 7-1.

TABLE 7-1: Properties of DataGridView

PROPERTY VALUE

Name dgv

ReadOnly True

Modifiers Public

Size 686;194

 8. At this point, your form and information package class are ready. Go back to the main add-in
class (SimpleSchemaReporter.cs) and write the following lines of code in the OnClick()
method to cast the selected item in the Table Of Contents window to ITable if the selected item is
of type IFeatureLayer2 or ITable:

 protected override void OnClick()
 {
 IMxDocument mxDoc = ArcMap.Application.Document as IMxDocument;

 if (mxDoc.SelectedItem is IFeatureLayer2 || mxDoc.SelectedItem is ITable)
 {
 ITable selectedTbl = mxDoc.SelectedItem as ITable;
 reportSchema(selectedTbl);
 }
 }

c07.indd 202c07.indd 202 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 203

A FeatureClass is a type of Table, so a single generic method will suffi ce to report the
schema of the selected item. Name the method ReportSchema.

 9. Finally, here is the ReportSchema() method, which requires an ITable instance as its input
parameter:

 void ReportSchema(ITable table)
 {
 //Build a generic list of fldClass instances
 List<fldClass> fldClassList = new List<fldClass>();

 IFields2 fields = table.Fields as IFields2;
 for (int i = 0; i < fields.FieldCount; i++)
 {
 IField2 field = fields.Field[i] as IField2;
 fldClass fldClassInstance = new fldClass(i + 1);
 //code working with each field
 fldClassInstance.AliasName = field.AliasName;
 fldClassInstance.Name = field.Name;

 fldClassInstance.IsNullable = field.IsNullable;
 fldClassInstance.IsRequired = field.Required;

 fldClassInstance.FieldType = field.Type;
 fldClassInstance.Length = field.Length;
 //populating list
 fldClassList.Add(fldClassInstance);
 }
 //for being able to use the Name of Table or FeatureClass
 IDataset dsTable = table as IDataset;

 frmGrid gridForm = new frmGrid();
 //databinding
 gridForm.dgv.DataSource = fldClassList;
 gridForm.Text = "Simple Schema of: " + dsTable.Name;
 gridForm.ShowDialog();
 }

 10. Run the code by pressing F5 and test the functionality of the add-in. Note that you need to use the
Customize window in order to add your add-in button to the user interface of ArcMap. Figure 7-4
is the result of clicking the add-in button when U.S. Cities is selected in the Table
Of Contents window.

FIGURE 7-4

c07.indd 203c07.indd 203 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

204 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

How It Works

In this example, you used a single method to populate a generic List of lightweight objects. Each of
these lightweight objects conveys information about Field instances. In addition to generics, you have
employed the data binding services of .NET.

The .NET Framework encapsulates much of the complexity of synchronizing controls (such as the
DataGridView control) to a data source (such as a List) through a process called data binding.
When you create a binding between a control and some data (for example, via the setting control’s
DataSource property), you are binding a binding target to a binding source. Behind the scenes, a bind-
ing object handles the interaction between the binding source and the binding target. In this example,
you need to have one-way or read-only data binding. So with just one line of code, you display all the
members of a List inside a DataGridView control.

Adding and Deleting Fields

In order to delete an existing fi eld, a live Field instance must be supplied for the DeleteField()
method of the IClass interface of the Table Class. Since the IObjectClass interface inherits from the
IClass interface and the IFeatureClass inherits from the IObjectClass, all members of the IClass
and the IObjectClass are available on the IFeatureClass interface. As a result, the DeleteField()
method can be directly accessed using the ITable and IFeatureClass interfaces. For referencing an
existing Field instance, you must use the IFields interface of the Fields CoClass.

The IFields2 interface has two useful methods for fi nding the index of a specifi c Field instance:
FindField() and FindFieldByAliasName(). The following code snippet uses the FindField()
method of the IFields2 interface to fi nd the Name fi eld of the fi rst layer inside the active Data Frame:

 ILayer layer = map.Layer[0];
 //suppose that the first layer is FeatureLayer
 IFeatureClass featureClass = (layer as IFeatureLayer2).FeatureClass;
 //find Name field
 IFields2 fields = featureClass.Fields as IFields2;
 IField2 nameField =null;
 int fieldIndex = fields.FindField("Name");
 //the index of field is zero-based
 if (fieldIndex >= 0)
 {
 nameField = fields.Field[fieldIndex] as IField2;
 }

The process for fi nding a specifi c fi eld is the same for Table instances, with one exception: the way
in which you get to the table itself. The following code snippet uses the second method to fi nd a
specifi c fi eld of the fi rst table in the List By Source contents view (the second view in the Table Of
Contents window in ArcMap):

 //accessing the first table inside
 // the source contents view of TOC
 ITable table = (map as ITableCollection).Table[0];
 IFields2 fields = table.Fields as IFields2;
 //find a field with Alias= City Name
 IField2 cityNameField =null;

c07.indd 204c07.indd 204 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 205

 int fieldIndex = fields.FindFieldByAliasName("City Name");
 //the index of field is zero-based
 if (fieldIndex >= 0)
 {
 cityNameField = fields.Field[fieldIndex] as IField2;
 }

An existing fi eld can be easily deleted using the DeleteField() method.

Try
{
 if (cityNameField != null)
 {
 table.DeleteField(cityNameField);
 //or featureClass.DeleteField(NameField);
 }
}
catch (Exception ex)
{
 //work with ex object and perform appropriate actions
 System.Windows.Forms.MessageBox.Show(ex.Message,ex.Source);
}

It is always good programming practice to check for the existence of a Field instance before trying
to delete it. In addition, using a try block ensures that the preceding code will cause the ArcGIS for
Desktop application to behave unexpectedly.

NOTE The schema lock feature of Esri’s geodatabase
model prevents adding or deleting a fi eld while in an
edit session (between Start Editing and Stop Editing
modes). In general, schema locks are used to manage
geodatabase schemas to ensure the structure of a
dataset will not change once it has been opened or
referenced. In short, deleting and adding a new fi eld
changes the schema of a Table or FeatureClass, so there must be only one user
who performs adding or deleting fi elds. That said, if you try to run the preceding
code in an edit session, you will receive the message shown in Figure 7-5.

Even if one dataset is being read by two diff erent ArcGIS for Desktop applica-
tions (like ArcMap and ArcCatalog) at the same time on the same machine,
no fi eld can be added or deleted. In this case, if you try to add a fi eld you will
receive the message shown in Figure 7-6.

Consult the ArcGIS documentation for diff erent types of schema locks.

FIGURE 7-5

FIGURE 7-6

c07.indd 205c07.indd 205 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

206 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

For adding a new fi eld to an existing Table or FeatureClass, you need to create a brand
new fi eld or reference an existing fi eld, and then use the AddField() method of the ITable or
IFeatureClass interfaces.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 ILayer layer = mxdoc.FocusMap.Layer[0];
 IFeatureClass featureClass = (layer as IFeatureLayer2).FeatureClass;
 IFields2 fields = featureClass.Fields as IFields2;

 IFieldEdit2 newField = new FieldClass();
 string fieldName = "NewField";
 newField.Name_2 = fieldName;
 newField.Type_2 = esriFieldType.esriFieldTypeString;
 newField.DefaultValue_2 = "no content";

 if (fields.FindField(fieldName) < 0)
 {
 try
 {
 featureClass.AddField(newField);
 }
 catch (Exception ex)
 {
 System.Windows.Forms.MessageBox.Show(ex.Message, ex.Source);
 }
 }

FIGURE 7-7 FIGURE 7-8

c07.indd 206c07.indd 206 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 207

The IFieldEdit2 interface inherits from the IField2 interface, so it has all the read-only properties
of its parent. In addition, the IFieldEdit2 has a write-only version of all the properties of the
IField2 interface. In contrast to what can be seen in the geodatabase object model diagram, write-
only members of this interface have a literal _2 at the end of their names, such as Name_2 and Type_2.
Figure 7-7 displays the IField and IFieldEdit interfaces on the geodatabase object model diagram.

The actual names of members of IFieldEdit2 and IField2 interfaces are shown in Figure 7-8.

Adding Existing FeatureClasses, Tables, and Rasters to a Map

In order to add existing FeatureClasses or tables to a map, a live instance of the appropriate
IWorkspaceFactory interface is needed. The IWorkspaceFactory interface is implemented
by the WorkspaceFactory Class. As shown in Figure 7-9, there are several subclasses of the
WorkspaceFactory Class.

FIGURE 7-9

GeodatabaseObjectModel

AccessWorkspaceFactory FileGDBWorkspaceFactory

SdeWorkspaceFactory

IGeoDataset

IFeatureDataset

GeoDataset

FeatureDataset

1

*

Dataset

Table

ObjectClass

FeatureClass

Workspace

Iworkspace
IFeatureworkspace

WorkspaceFactory

IworkspaceFactory

*

DataSourceGDBObjectModel

ShapefileWorkspaceFactory

DataSourceFileObjectModel

CadWorkspaceFactory

c07.indd 207c07.indd 207 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

208 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

As the names of the subclasses imply, they are used to instantiate a corresponding Workspace object
in order to access the datasets inside it. For example, a ShapefileWorkspaceFactory can create a
Workspace object representing a folder containing shapefi les, a FileGDBWorkspaceFactory creates
a Workspace instance representing a fi le geodatabase, and an SdeWorkspaceFactory can create a
Workspace object, which indicates an instance of a local or remote ArcSDE spatial DBMS service.

Put simply, a workspace is a container of datasets and it comes in many fl avors. More precisely, a
workspace is a container of geospatial and non-geospatial datasets. Using a workspace, existing
datasets can be accessed and new geospatial and non-geospatial data can be created. In order to
instantiate a workspace, you need to fi rst create a WorkspaceFactory instance. The following code
creates a FileGDBWorkspaceFactory instance.

 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();

An instance of a workspace is created using the OpenFromFile() method of the
IWorkspaceFactory interface.

string gdbFileAddress=@"D:/DataFolder/fileGDB.gdb";
IWorkspace ws = wsf.OpenFromFile(gdbFileAddress, ArcMap.Application.hWnd);

A workspace is associated with several datasets. So the next step for adding vector-based data
to a map is to cast the IWorkspace interface to the IFeatureWorkspace. Then you can use the
OpenFeatureClass() and OpenFeatureDataset() methods of the IFeatureWorkspace interface
in order to access all the FeatureClasses and FeatureDatasets inside the workspace. The following
code provides access to the cities FeatureClass.

IFeatureWorkspace fws = ws as IFeatureWorkspace;
IFeatureClass fc = fws.OpenFeatureClass("cities");

The rest of the code for adding a FeatureClass to a map is to create a FeatureLayer instance and
add it to the map.

IFeatureLayer fl = new FeatureLayerClass();
fl.Name = "Cities of the US";
fl.FeatureClass = fc;
IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
mxdoc.AddLayer(fl);

mxdoc.ActiveView.Refresh();
mxdoc.UpdateContents();

NOTE In order to run the preceding code, you must add references to ESRI
.ArcGIS.DataSourcesGDB, ESRI.ArcGIS.Display, ESRI.ArcGIS.Geodatabase,
and ESRI.ArcGIS.Carto to your ArcObjects project.

As shown in earlier in this section, the OpenFromFile() method of the IWorkspaceFactory
interface can be used to create fi le-based workspaces like shapefi les and fi le geodatabases. In order
to create a DBMS-based workspace, you must use the Open() method of the IWorkspaceFactory
interface. The Open() method solicits a PropertySet object. Simply put, a PropertySet is a bag of
key and value pairs. The PropertySet CoClass resides in the System library of ArcObjects.

c07.indd 208c07.indd 208 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 209

The required setting for opening a connection to an ArcSDE geodatabase (a connection string in DBMS
terminology) can be stored in a single instance of the PropertySet CoClass. The following code
illustrates the use of the PropertySet CoClass to connect to a remote data server called gisServer.

 IWorkspaceFactory wsf = new SdeWorkspaceFactoryClass();

 IPropertySet pSet = new PropertySetClass();
 pSet.SetProperty("Server", "gisServer");//name of server
 pSet.SetProperty("Instance", "5151");//port
 pSet.SetProperty("Database", "MunicipalityGDB");//name of Database
 pSet.SetProperty("User", "sde");//name of user connecting to DB
 pSet.SetProperty("Password", "@Keep#Moving_Forward");//password
 pSet.SetProperty("Version", "sde.Default");//version to be connected

 IWorkspace ws = wsf.Open(pSet, ArcMap.Application.hWnd);
 IFeatureWorkspace fws = ws as IFeatureWorkspace;

NOTE Seasoned programmers know that hard coding usernames and pass-
words is a bad idea. Traditional approaches, such as getting these two sensitive
pieces of information from users using a login window, are better.

In order to connect to an ArcSDE geodatabase, in addition to a username and
password, you need to provide the name or IP address of the server, the name
of the database, and either ArcSDE service information (such as port) or a direct
connection string (such as sde:sqlserver:serverName, in the case of Microsoft
SQL Server DBMS). For diff erent approaches and various parameters connecting
to an ArcSDE geodatabase, consult the online ArcGIS Resource Center website
(http://resources.arcgis.com/en/home/).

You can access datasets inside a workspace using the Subsets property of the IFeatureDataset
interface. This is of type IEnumDataset, and as you may guess, the Next() method of this interface
returns an IDataset instance. The following code snippet adds all FeatureClasses residing in the
USA FeatureDataset of a FileGDB.

 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();
 IFeatureWorkspace fws = wsf.OpenFromFile(fileGDBAddress,
 ArcMap.Application.hWnd) as IFeatureWorkspace;

 IFeatureDataset fds = fws.OpenFeatureDataset("USA");
 IEnumDataset enumDS = fds.Subsets;
 IDataset ds = enumDS.Next();

 while (ds != null)
 {
 if (ds is IFeatureClass)
 {
 IFeatureClass fc = ds as IFeatureClass;
 IFeatureLayer fl = new FeatureLayerClass();
 fl.Name = ds.Name;
 fl.FeatureClass = fc;
 mxdoc.AddLayer(fl);
 ds = enumDS.Next();

c07.indd 209c07.indd 209 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://resources.arcgis.com/en/home/
http://www.it-ebooks.info/

210 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

 }
 }
 mxdoc.ActiveView.Refresh();
 mxdoc.UpdateContents();
 }

In order to get access to all FeatureDatasets in a geodatabase, you must use the Datasets
property of the IWorkspace interface. When you are programming in .NET, Java, or C++, you need
to consider situations in which the members of interfaces cannot be accessed in code. One of these
situations is the Datasets property of IWorkspace. In VB 6.0, you can access this property by its
name. In .NET and C++, you get to the same result using the get_Datasets() method, and in Java,
use the getDatasets() method.

The next Try It Out uses the topics you have learned up to now in this chapter to create an add-in
button for adding all FeatureClasses inside all FeatureDatasets of a selected fi le geodatabase.

TRY IT OUT Adding All FeatureClasses inside All FeatureDatasets of a
File Geodatabase (AddingAllFeatureClasses.zip)

 1. Open the SimpleSchemaReporter solution by double-clicking its solution fi le (SimpleSchema
Reporter.sln).

 2. Add references for Geodatabase, DataSourcesGDB, Catalog, CatalogUI, and Display using the
Add ArcGIS Reference window.

 3. You need to add a new add-in component. To do that, right-click on your project in the Solution
Explorer window and select New Item from the Add submenu. Then select the Desktop Add-Ins
item under the ArcGIS template. Name your add-in component AddAllFeatureClasses.cs and
click the Add button.

 4. In the ArcGIS Add-Ins Wizard, select Button as the type of add-In, set its properties as shown in
Figure 7-10, and click Finish.

FIGURE 7-10

c07.indd 210c07.indd 210 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 211

 5. You are going to add a command container add-in (toolbar) to your project. The steps for adding
a command container for versions 10 and 10.1 of ArcGIS are slightly different.

 ➤ For ArcGIS 10.1, right-click on your project in the Solution Explorer window and select New
Item from the Add submenu. Then select the Desktop Add-Ins item under the ArcGIS template.
Then select the Add-in Command Container item and name it myToolbar.cs. Select Toolbar
as the type of Command Bar and add the ReferenceIDs of all add-in buttons in your project by
clicking inside the Items grid. Finally click the Finish button (see Figure 7-11).

FIGURE 7-11

 ➤ For ArcGIS 10, right-click on your project in the Solution Explorer window and select New Item
from the Add submenu. Then select the Desktop Add-Ins item under the ArcGIS template. Then
select Add-in Component and name it myToolbar.cs.

 Without specifying anything in the fi rst page of the ArcGIS Add-Ins Wizard, go to the second
page by clicking on Add-in Command Bars. Select Toolbar, confi gure its settings as shown in
Figure 7-11, and click the Finish button.

 6. If you run your code by pressing F5, you won’t need to resort to the Customize window for
adding your newly created button to the user interface of ArcMap. Both buttons are now on a
toolbar. If you are in Run mode, press the Stop Debugging button and go to the code window of
your newly added button class (AddAllFeatureClasses.cs). Add the following using directives
at the top of the code fi le:

c07.indd 211c07.indd 211 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

212 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Catalog;
using ESRI.ArcGIS.CatalogUI;

 7. You want to let users specify a fi le geodatabase. The best tool for this purpose is
GxDialogClass(). So add the following lines of code to the OnClick() method of your
AddAllFeatureClasses button:

 IGxDialog gxd = new GxDialogClass();
 gxd.AllowMultiSelect = false;
 gxd.ButtonCaption = "Add FileGDB";
 gxd.Title = "Add All FeatureClasses inside FileGDB";
 gxd.RememberLocation = true;

 IGxObjectFilter gxObjFilter = new GxFilterFileGeodatabasesClass();
 gxd.ObjectFilter = gxObjFilter;

 IEnumGxObject gxEnumObj;
 gxd.DoModalOpen(ArcMap.Application.hWnd, out gxEnumObj);
 IGxObject gxObj = gxEnumObj.Next();
 //getting the address of fileGDB
 string fileGDBAddress = gxObj.FullName;

 8. The rest of the code is to iterate through all FeatureDatasets in the specifi ed fi le geodatabase
and add the FeatureClasses inside them to the map.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();
 IFeatureWorkspace fws = wsf.OpenFromFile(fileGDBAddress,
 ArcMap.Application.hWnd) as IFeatureWorkspace;
 IWorkspace ws = fws as IWorkspace;
 //get all FeatureDatasets inside fileGDB
 IEnumDataset enumDS =
 ws.get_Datasets(esriDatasetType.esriDTFeatureDataset);
 try
 {
 //first FeatureDataset
 IDataset featureDataSet = enumDS.Next();
 while (featureDataSet != null)
 {
 //get all FeatureClasses inside a FeatureDataset
 IEnumDataset featureClassesInFDS = featureDataSet.Subsets;
 IDataset singleFeatureClassAsDataset =
 featureClassesInFDS.Next();

 while (singleFeatureClassAsDataset != null)
 {

c07.indd 212c07.indd 212 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 213

 if (singleFeatureClassAsDataset is IFeatureClass)
 {
 IFeatureClass singleFeatureClass =
 singleFeatureClassAsDataset as IFeatureClass;
 IFeatureLayer featureLayer = new FeatureLayerClass();
 featureLayer.Name = singleFeatureClassAsDataset.Name;
 featureLayer.FeatureClass = singleFeatureClass;
 mxdoc.AddLayer(featureLayer);
 }
 singleFeatureClassAsDataset = featureClassesInFDS.Next();
 }
 featureDataSet = enumDS.Next();
 }
 mxdoc.ActiveView.Refresh();
 mxdoc.UpdateContents();
 }
 catch (Exception ex)
 {
 System.Windows.Forms.MessageBox.Show(ex.Message, ex.Source);
 }

Press F5 to run the code and test the functionality of this button.

How It Works

This Try It Out used the get_Datasets() method of the IWorkspace interface and the Subset prop-
erty of the IDataset interface to iterate through all FeatureClasses inside all FeatureDatasets of
a fi le geodatabase. Note that since you use the esriDatasetType.esriDTFeatureDataset as input to
the get_Datasets() method, stand-alone FeatureClasses of a fi le geodatabase cannot be added to the
map.

In addition, you used a toolbar to contain the button you created in Step 4. When you added the tool-
bar to the project, behind the scenes, the XML confi guration fi le of the add-in (Config.esriaddinx)
was modifi ed to include a toolbar with the setting introduced in the ArcGIS Add-In Wizard window, as
shown in the following code:

<Toolbar id="Microsoft_SimpleSchemaReporter_Geodatabase_Utility"
caption="Geodatabase Utility" showInitially="true" >
 <Items>
 <Item refID="Microsoft_SimpleSchemaReporter_SimpleSchemaReporter" />
 <Button refID="Microsoft_SimpleSchemaReporter_AddAllFeatureClasses"
 separator="true" />
 </Items>
 </Toolbar>

The confi guration fi le of the add-in is utilized to include the static aspects of all types of add-ins in a
project — including captions, ToolTips, Help information, images, and initial layout details.

c07.indd 213c07.indd 213 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

214 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

Adding a table to a map is similar to adding a FeatureClass to a map. Table instances don’t have
an associated Layer object; you have to directly add them to the map using the ITableCollection
interface of the Map CoClass. The following code adds the fi rst table in a fi le geodatabase to the
Table of Contents window:

 string fileGDBAddress =@"D:/DataFolder/fileGDB.gdb";
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = wsf.OpenFromFile(fileGDBAddress,
 ArcMap.Application.hWnd);
 IEnumDataset enumDS = ws.get_Datasets(esriDatasetType.esriDTTable);
 IDataset ds = enumDS.Next();
 ITable table = ds as ITable;
 IMap map = mxdoc.FocusMap;
 ITableCollection tableColl = map as ITableCollection;
 tableColl.AddTable(table);
 mxdoc.UpdateContents();

In order to add raster data to the map, you should use some other related types in ArcObjects.
Figure 7-12 illustrates the classes and relationship between them, which are relevant when adding a
RasterDataset to a map.

FIGURE 7-12

GeodatabaseObjectModel

Dataset

Workspace *

FeatureDataset

GeoDataset

DataSourcesRasterObjectModel

RasterDataset

RasterWorkspace WorkspaceFactory

RasterWorkspaceFactory

c07.indd 214c07.indd 214 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 215

The process to get to an existing RasterDataset is a bit different in comparison with previous
approaches to get to the existing FeatureClasses or tables. The following code demonstrates adding
a satellite image with the name geoeye-1-endeavour.tif, which is located in D:\DataFolder.
As you can see, the OpenRasterDataset() method of the IRasterWorkspace is used to create a
RasterDataset. Note that you use the CreateFromDataset() method of IRasterLayer to reference
the RasterDataset.

 string parentDirectory = @"D:/DataFolder/";
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IWorkspaceFactory wsf = new RasterWorkspaceFactoryClass();
 IWorkspace ws = wsf.OpenFromFile(parentDirectory,
 ArcMap.Application.hWnd);
 IRasterWorkspace rasterWS = ws as IRasterWorkspace;
 IRasterDataset rasterDataset =
 rasterWS.OpenRasterDataset(@"geoeye-1-endeavour.tif");
 IRasterLayer rasterLayer = new RasterLayerClass();
 rasterLayer.CreateFromDataset(rasterDataset);
 mxdoc.AddLayer(rasterLayer);
 mxdoc.ActiveView.Refresh();
 mxdoc.UpdateContents();

Deleting an Existing FeatureDataset, FeatureClass,

Table, or Raster

To this point in this chapter, you have learned how to access existing FeatureClasses, rasters,
tables, and FeatureDatasets. In addition to accessing these items, you might need to remove them
as well. Fortunately, it is easy to delete any kind of class that implements the IDataset interface
using its Delete() method. The following code demonstrates how to delete the fi rst table in a fi le
geodatabase:

 string fileGDBAddress =@"D:/DataFolder/fileGDB.gdb";
 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = wsf.OpenFromFile(fileGDBAddress,
 ArcMap.Application.hWnd);
 IFeatureWorkspace fws = ws as IFeatureWorkspace;
 IEnumDataset enumDS = ws.get_Datasets(esriDatasetType.esriDTTable);
 IDataset ds = enumDS.Next();
 if (ds.CanDelete() == true)
 {
 ds.Delete();
 }

Creating Tables and Rows

The IFeatureWorkspace interface of the Workspace Class plays a major role in creating geodatabase
objects such as tables, FeatureClasses, and RelationshipClasses. A FeatureClass is a special kind
of table, and features inside a FeatureClass are special kinds of rows of a table. This can be seen
in Figure 7-13, which provides a simplifi ed view of a Geodatabase object model diagram (see the
specialization-inheritance between FeatureClass and Table as well as between Feature and Row).

c07.indd 215c07.indd 215 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

216 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

NOTE This section only discusses creating and populating tables. Chapter 8
covers the geometry of features and Chapter 13 explains the creation other
types of geodatabase objects such as FeatureClasses and FeatureDatasets.

Follow these steps in order to create and populate a table instance:

 1. Create a Fields instance.

 2. Create necessary Field objects and add them to the Fields instance.

 3. Use the IFeatureWorkspace interface to create a Table.

 4. Use the created Table to make an empty Row instance.

 5. Set values for each column of the created Row instance.

Among all the types needed to create and populate a table, Field and Fields are CoClasses.
After creating an instance of the Fields CoClass, the FieldCount property must be set. This is
important because this collection object must know how many Field objects will be inside the
collection. Because you create a brand new instance, you defi nitely want write access to the members

FIGURE 7-13

GeodatabaseObjectModel

FeatureClass

Table

Row

Dataset

Feature

Object

c07.indd 216c07.indd 216 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 217

of the Fields objects. For this reason, you must use the IFieldsEdit interface. A literal _2 also
must be added to names of members on this interface in .NET. In summary, the number of
Fields must be known beforehand.

 IFieldsEdit fields = new FieldsClass();
 fields.FieldCount_2 = 3;

Name is the only mandatory property of a Field object. But it is common practice to specify
the data type of each Field in addition to its name to create the bare bones of a Field object.
If the data type of a Field wasn’t specifi ed, ArcObjects considers it a Long Integer (C# long)
data type.

Note that each table must have one fi eld of type esriFieldTypeOID. This fi eld is an identity fi eld
and is basically a record number. The values stored by the OID fi eld are integers that uniquely
identify each record (starting from one and incrementing from top to bottom). These values are
managed internally by ArcObjects and do not need to be explicitly set by the user or code. The
following code snippet creates a string fi eld and assigns it as the second fi eld in a collection of Field
instances:

 IFieldEdit2 field1 = new FieldClass() as IFieldEdit2;
 field1.Name_2 = "OID";
 field1.Type_2 = esriFieldType.esriFieldTypeOID;
 fields.Field_2[0] = field1;

 IFieldEdit2 field2 = new FieldClass() as IFieldEdit2;
 field2.Name_2 = "StateName";
 field2.Type_2 = esriFieldType.esriFieldTypeString;
 fields.Field_2[1] = field2;

 IFieldEdit2 field3 = new FieldClass() as IFieldEdit2;
 Field3.Name_2 = "StatePopulation";
 Field3.Type_2 = esriFieldType.esriFieldTypeString;
 fields.Field_2[2] = field3;

NOTE In the preceding code, you added the OID fi eld manually. You can also
automatically provide required fi elds and then add the necessary fi elds manually.
The RequiredFields property of an instance of the IObjectClassDescription
interface returns a Fields instance that contains the mandatory Field instances,
such as an OID fi eld.

In the third step, you must use the CreateTable() method of the IFeatureWorkspace interface to
create a table. This method solicits the name of Table and Fields objects as mandatory inputs. It
is always a good idea to check for the existence of a table with the same name in the same location
before creating it, as shown in the following code:

c07.indd 217c07.indd 217 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

218 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = wsf.OpenFromFile(fileGDBAddress,
 ArcCatalog.Application.hWnd);
 IWorkspace2 ws2 = ws as IWorkspace2;
 if (!ws2.get_NameExists(esriDatasetType.esriDTTable, tableName))
 {
 IFeatureWorkspace fws = ws as IFeatureWorkspace;
 ITable table = fws.CreateTable(tableName, fields, null,
 null, "");
 }

NOTE It is a good idea to validate the Fields instance before creating a table.
For this task, you can take advantage of the Validate() method of an instance
of the FieldChecker CoClass. This method creates a validated version of the
input Fields object.

At this point, you can use a live instance of Table to create a record. Using a Table to create a Row
instance ensures that the created Row has the necessary and appropriate placeholders for storing
values for all columns in the table.

IRow row = table.CreateRow();

The IRow interface inherits from the IRowBuffer interface. The IRowBuffer interface has a Value
property which must be utilized to fi ll each placeholder of a row. Finally, to save a row, the Store()
method must be called.

row.Value[1] = "Texas";
row.Value[2]= 20000000;
row.Store();

There is no need to assign values for an OID fi eld; that is why the index for the Value property in
the preceding code starts from 1.

It’s time to have some fun with the topics you have learned. In the next Try It Out, you create
an ArcCatalog add-in that converts a Comma Separated Values (CSV) text fi le to a table in a fi le
geodatabase. The fi rst line in the text fi le indicates fi eld names. The user of the add-in just needs to
select the source text fi le and target fi le geodatabase. Behind the scenes, the add-in reads the fi rst
line of the text fi le to extract the fi eld names and then infer the data type of each fi eld based on the
second line inside the text fi le. The rest of the code of the add-in creates a table with the same name
as the input text fi le and populates it.

TRY IT OUT Converting a CSV Text File to a Table (CSV2Table.zip)

 1. Create a new project in Visual Studio. Select ArcCatalog Add-in as the template (in the New
Project window, expand the Visual C# ➪ ArcGIS node and select ArcCatalog Add-In from the
Desktop Add-Ins templates) and name your solution CSV2Table. Then click OK.

 2. In the Add-Ins Wizard, provide your information and click the Next button. On the next page,
select Button as the type of add-in and change its setting, as shown in Figure 7-14.

c07.indd 218c07.indd 218 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 219

 3. Add Catalog, DataSourcesFile, DataSourcesGDB, and Geodatabase references to your project
and the following lines of code to the top section of the csvConvertor.cs fi le’s code window:

using ESRI.ArcGIS.Catalog;
using ESRI.ArcGIS.CatalogUI;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.Geodatabase;

 4. You must determine the types of Field objects based on the data. For simplifying this task, it is
a good idea to create an enumeration that contains three members for numeric, textual, and date
data types. You can add the code of this enumeration anywhere in the class fi le (csvConvertor
.cs) of your button as long as it is not inside other methods. Name the enumeration
FieldDataType and add it as the fi rst item in the class defi nition. Your class fi le should be similar
to the following code:

public class csvConvertor : ESRI.ArcGIS.Desktop.AddIns.Button
 {
 public enum FieldDataType
 {
 numeric,
 text,
 date
 }
 public csvConvertor(){}

FIGURE 7-14

c07.indd 219c07.indd 219 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

220 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

 protected override void OnClick(){}

 protected override void OnUpdate()
 { Enabled = ArcCatalog.Application != null;}
 }

 5. In order to determine the data type of each fi eld, you need to evaluate the data items (CSVs) of
the second line in a text fi le. The following method evaluates its input and returns a member of
FieldDataType enumeration indicating its input data type. Add the following method in the class
defi nition of your button (csvConvertor.cs):

private FieldDataType DetermineTheFieldType(string item)
 {
 double num;
 DateTime date;
 if (double.TryParse(item, out num))
 {
 return FieldDataType.numeric;
 }
 else if (DateTime.TryParse(item, out date))
 {
 return FieldDataType.date;
 }
 //otherwise it is string
 return FieldDataType.text;
 }

 6. As the beginning of this section states, the fi rst step to create a table is to create a Fields
instance. This instance must contain one OID fi eld and other Field objects. The names of other
Field objects should be extracted from the fi rst line of the text fi le. In addition, the data type
of Field objects must be inferred from the fi rst line of data in the text fi le, which is the second
line of the text fi le. So you need to write a method with two inputs representing the fi eld names
and data items of the fi rst line of data for creating a table. In addition, this method uses the
DetermineTheFieldType() method and returns an IFieldsEdit instance. Add the following
method to your add-in (csvConvertor.cs):

 private IFieldsEdit CreateTableSchema(string[] dataItemsOfFirstLine, string[]
 fieldNames)
 {
 IFieldsEdit fields = new FieldsClass();
 fields.FieldCount_2 = fieldNames.Length + 1;
 //creating OID field
 IFieldEdit OIDField = new FieldClass() as IFieldEdit2;
 OIDField.Name_2 = "ObjectIDentifier";
 OIDField.Type_2 = esriFieldType.esriFieldTypeOID;
 fields.Field_2[0] = OIDField;

 for (int i = 0; i < fieldNames.Length; i++)
 {
 IFieldEdit2 newField = new FieldClass() as IFieldEdit2;
 FieldDataType FDT = DetermineTheFieldType(dataItemsOfFirstLine[i]);

c07.indd 220c07.indd 220 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 221

 newField.Name_2 = fieldNames[i].Trim();

 switch (FDT)
 {
 case FieldDataType.numeric:
 newField.Type_2 = esriFieldType.esriFieldTypeDouble;
 break;
 case FieldDataType.date:
 newField.Type_2 = esriFieldType.esriFieldTypeDate;
 break;
 default:
 newField.Type_2 = esriFieldType.esriFieldTypeString;
 break;
 }

 fields.Field_2[i + 1] = newField;
 }
 return fields;
 }

 7. Time to create a table, which is a simple task. All you need are the name, a Fields object, and the
path to the fi le geodatabase in which the created table will be saved. Add the following method to
create the table:

 private ITable CreateTable(string tableName, IFieldsEdit fields, string
 fileGDBAddress)
 {

 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = wsf.OpenFromFile(fileGDBAddress,
 ArcCatalog.Application.hWnd);

 IFeatureWorkspace fws = ws as IFeatureWorkspace;
 IWorkspace2 ws2 = ws as IWorkspace2;
 if (!ws2.get_NameExists(esriDatasetType.esriDTTable, tableName))
 {
 ITable table = fws.CreateTable(tableName, fields, null, null, "");
 return table;
 }
 return null;
 }

 8. In order to make the process of interacting with your button more user friendly, it is good to
use the GxDialog and show it to users to allow them to select the source text fi le and target fi le
geodatabase. Add the following lines of code in the OnClick() method to do this:

 //using gxdiaolog to get the text file
 IGxDialog gxd = new GxDialogClass();
 gxd.AllowMultiSelect = false;
 gxd.ButtonCaption = "Select txt file";
 gxd.Title = "Select a text file to be converted to a Table inside a
 File GDB";
 gxd.RememberLocation = true;

c07.indd 221c07.indd 221 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

222 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

 IGxObjectFilter gxTxtFilter = new GxFilterTextFilesClass();
 gxd.ObjectFilter = gxTxtFilter;

 IEnumGxObject gxEnumObj;
 gxd.DoModalOpen(ArcCatalog.Application.hWnd, out gxEnumObj);

 IGxObject gxObj = gxEnumObj.Next();
 //user clicks on cancel button
 if (gxObj == null)
 { return; }

 //getting the address of text file
 string fileAddress = gxObj.FullName;
 //set the name of table as the name of text file
 string tableName = gxObj.BaseName;
 //again displaying gxDialog to select file GDB
 gxd.ButtonCaption = "Select FileGDB";
 gxd.Title = "Select target file Geodatabase ";
 IGxObjectFilter gxGDBFilter = new GxFilterFileGeodatabasesClass();
 gxd.ObjectFilter = gxGDBFilter;
 gxd.DoModalOpen(ArcCatalog.Application.hWnd, out gxEnumObj);
 gxObj = gxEnumObj.Next();
 if (gxObj == null)
 { return; }
 //getting the address of fileGDB
 string fileGDBAddress = gxObj.FullName;

 9. You need to read the fi rst and second lines of the text fi le and call the CreateTableSchema()
method in order to create a Fields instance. So add the following code to the OnClick() method:

 FileStream fs = new FileStream(fileAddress, FileMode.Open);
 StreamReader sr = new StreamReader(fs);
 //read the first line (field names)
 string lineOfTxtFile = sr.ReadLine();
 //extracting fieldNames
 string[] splitter = { "," };
 string[] fieldNames = lineOfTxtFile.Split(splitter,
 StringSplitOptions.RemoveEmptyEntries);
 //read the second line of text file (first line of data)
 lineOfTxtFile = sr.ReadLine();
 //create fields based on the data type of first record
 string[] dataItems = lineOfTxtFile.Split(splitter,
 StringSplitOptions.RemoveEmptyEntries);
 //Create collection of Fields to be used to build a Table
 IFieldsEdit fields = CreateTableSchema(dataItems, fieldNames);

 10. Next, use the CreateTable() method in the OnClick() method.

 //create Table instance
 ITable table = CreateTable(tableName, fields, fileGDBAddress);
 //table exists
 if (table == null)
 { return; }

c07.indd 222c07.indd 222 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Tables and FeatureClasses ❘ 223

 11. Up to this point, you have read the fi rst and second lines of the text fi le. You also have a table.
Now you need to create rows and populate them and do the same for the other lines of the text
fi le. Add the following code at the end of the OnClick() method:

//create each row as reader reads the text file
while (lineOfTxtFile != null)
{
 IRow row = table.CreateRow();
 //Important tip: any table must have one OID Field
 //the first field is OID
 for (int i = 0; i < table.Fields.FieldCount - 1; i++)
 {
 if (table.Fields.Field[i + 1].Type == esriFieldType.esriFieldTypeDouble)
 {
 row.Value[i + 1] = double.Parse(dataItems[i]);
 }
 else if (table.Fields.Field[i].Type == esriFieldType.esriFieldTypeDate)
 {
 row.Value[i + 1] = DateTime.Parse(dataItems[i]);
 }
 else
 {
 row.Value[i + 1] = dataItems[i].Trim();
 }
 }
 //saving a row in table
 row.Store();

 lineOfTxtFile = sr.ReadLine();
 if (lineOfTxtFile != null)
 {
 dataItems = lineOfTxtFile.Split(spliter,
 StringSplitOptions.RemoveEmptyEntries);
 }
}

 12. Run your code, use the Customize menu, and select the Customize mode to add your button to
the user interface of the ArcCatalog. Test the button and enjoy it. You can use the CSV fi le created
in Chapter 4 to test this add-in.

How It Works

This Try It Out uses the famous separation of concerns principle (in its simplest form) to write reus-
able and maintainable code. You focused on a specifi c concern in each method that you created. As an
example, if you want to enhance the current version of this button to separate numeric values into inte-
gral and fractional, all you need to do is to modify a single method: DetermineTheFieldType().

c07.indd 223c07.indd 223 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

224 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

In addition to the classes that you have explored, the other family of objects can be used for data
access and creation: the Name family.

A Name object represents a very light version of a geodatabase object (such as Table, FeatureClass,
and FeatureDataset). The ultimate parent interface of all Name objects (IName interface) has an
Open() method, which can be used to instantiate the actual geodatabase object. Figure 7-15 illustrates
the simplifi ed hierarchy of the Name family.

FIGURE 7-15

GeodatabaseObjectModel

Name

DatasetName
WorkspaceNameWorkspace

TableName

FeatureClassName

Table

FeatureClassFeatureDataset

esriSystem.IName

FeatureDatasetName

The following code uses the Open() method to create an IWorkspace instance:

 IWorkspaceFactory wsf = new FileGDBWorkspaceFactoryClass();
 //IWorkspace ws =wsf.OpenFromFile();
 IWorkspaceName wsn = wsf.Create(parentDir, gdbName, null,
 ArcCatalog.Application.hWnd);

 IName name = wsn as IName;
 //create the actual IWorkspace object
 IWorkspace ws = name.Open() as IWorkspace;

Alternatively, you can make use of the Name family to create and access other geodatabase objects
inside a workspace.

c07.indd 224c07.indd 224 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 225

SUMMARY

From a user perspective, the geodatabase is a native format of data in the ArcGIS platform. The
ArcGIS platform has various fl avors, such as personal, fi le, and enterprise. And the ArcGIS platform
manages geospatial and non-geospatial data inside various kinds of geodatabases using a relational
database model.

From a developer’s perspective, a geodatabase is a fully object-oriented model and system for
accessing and creating various kinds of geospatial and non-geospatial data. The geodatabase
model makes it possible to access geospatial and non-geospatial data which are stored in
relational, georelational, and other database models using the same set of classes. The geodatabase
model allows you to work with all supported formats of the ArcGIS platform based on Esri’s
documentations (see http://resources.arcgis.com/en/help/arcobjects-net/component
help/index.html#//002500000n8v000000).

This chapter discusses some important topics about data access and creation. Use the knowledge you
have gained in this chapter to get to the specifi c fi eld inside a table or FeatureClass. In addition, you can
create a record of a table and set its values. The next chapter discusses creating geospatial records
(Feature instances).

EXERCISES

 1. Which class can be used for creating a FeatureDataset inside a personal geodatabase?

 2. What is the result of the following code?

 string data=""
 foreach (IField field in fields)
 {
 data += field.Name +",";

 }

 3. Which attribute in the XML confi guration fi le of an add-In indicates that a toolbar must be shown

the fi rst time ArcGIS for Desktop applications run?

You will fi nd the answers to these exercises in this book’s appendix.

c07.indd 225c07.indd 225 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://resources.arcgis.com/en/help/arcobjects-net/componenthelp/index.html#//002500000n8v000000
http://resources.arcgis.com/en/help/arcobjects-net/componenthelp/index.html#//002500000n8v000000
http://www.it-ebooks.info/

226 ❘ CHAPTER 7 WORKING WITH TABLES AND FEATURECLASSES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Accessing fi elds of a

FeatureLayer

A FeatureClass associated with a FeatureLayer can be accessed using

the FeatureClass property of the IFeatureLayer2 interface. Using the

Fields property of the IFeatureClass interface, you can get a Fields

object, which is a collection of Field objects composing the underlying

FeatureClass.

Deleting a geodatabase

object

Any class that implements the IDataset interface can call its Delete()

method to delete itself. Fortunately, IDataset is the parent to lots of

types in the geodatabase model.

Schema lock Schema locks are used to manage geodatabase schemas (such as fi elds

and their properties of FeatureClasses and tables) to ensure the structure

of a dataset will not change once it has been opened or referenced.

c07.indd 226c07.indd 226 25/02/13 12:09 PM25/02/13 12:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Subsets of Records

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Exploring object model diagrams for subsets of records

 ➤ Creating cursors

 ➤ Working with SelectionSets

 ➤ Performing select by attribute

 ➤ Performing select by location

 ➤ Calculating simple statistics for numerical fi elds

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter08 folder and
is individually named according to the names throughout the chapter.

Users of ArcGIS for Desktop applications make use of subsets of features and rows in various
ways. Usually they need to select and highlight features and rows in a map. Sometimes they
create a subset of features to be displayed in a map. Developers have more options to work
with subsets of features or rows. For example, you can work with subsets of features without
highlighting them on a map.

In this chapter, you look at subsets of features and rows; how to work with existing selections;
how to select subsets of features without highlighting them; and how to restrict a FeatureLayer
to display just a subset of features. You also explore how you can calculate simple statistics out
of a numeric fi eld of a FeatureClass associated with a FeatureLayer.

8

c08.indd 227c08.indd 227 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

228 ❘ CHAPTER 8 SUBSETS OF RECORDS

USING OBJECT MODEL DIAGRAMS FOR SELECTING

FEATURES AND ROWS

Selecting features in FeatureClasses and rows in tables is indispensable to a typical GIS workfl ow.
Users of ArcMap applications can select features in FeatureClasses or rows in tables using the
Select By Attributes window. By specifying a layer and a condition based on fi elds of a FeatureClass
associated with the specifi ed layer, you select features and highlight them on the map. A very similar
task can be done for table objects in the List By Source contents view of the Table Of Contents
window in ArcMap.

In addition to selecting features or rows by providing an attribute condition, features can be selected
by their geometry and the topological relationship they have in relation with other features in
and out of the parent FeatureClass. This is the basic idea of the Select By Location window of the
ArcMap application, which is another way of selecting features. Figure 8-1 illustrates the object
model diagram for selecting features and rows (records).

FIGURE 8-1

IFeatureLayer2
IMap

Map

ITableCollection

CartoObject Model

GeodatabaseObjectModel

FeatureClass

ObjectClass

Feature

Object

Row

SpatialFilterFeatureCursor

Cursor

SelectionSet

EnumIDs

IFeatureSelection

FeatureLayer

QueryFilter
Table

c08.indd 228c08.indd 228 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Existing Selections ❘ 229

As described in Chapter 5 and shown here in Figure 8-1, a diamond placed at the intersection
of a Table Class and QueryFilter CoClass means a Table instance in conjunction with a
QueryFilter instance can create Cursor and SelectionSet objects. Since FeatureClass is a type
of table, a FeatureClass can also create FeatureCursor and SelectionSet objects with the
help of a QueryFilter instance or its spatial subclass, SpatialFilter.

In fact, central types in the Select By Attributes window of the ArcMap user interface are
FeatureClass (or Table) and QueryFilter classes. As you may guess, SpatialFilter and
FeatureClass compose essential types of logic behind the Select By Location window.

As you have seen in Chapter 7, a Table can create a brand new Row object. As shown in Figure 8-1,
a Cursor can create Rows as well. But keep in mind that not all types of Cursors can create Rows.
In this chapter I only discuss cursors that are created using the Search() method of a dataset (such
as Table and FeatureClass instances) or a group of selected records (such as SelectionSet
instances). These cursors (which are called search cursors) cannot create new records or modify or
delete existing ones. Think of them as read-only cursors. Chapter 13 explains update and insert
cursors.

NOTE All the examples and code snippets in this chapter assume that you have
some FeatureLayers of the USA FeatureDataset in ArcMap. In addition, to test
the functionality of code snippets in this chapter, you can create an ArcMap
Button Add-in, add the code snippet to the OnClick() method of the add-in, and
run the code. When ArcMap pops up, after adding the button to the user inter-
face of ArcMap, select some features or rows and select the layer or table in the
Table Of Contents window, and fi nally click on the button. Make sure you add
Geometry, Geodatabase, and Carto references to your project.

WORKING WITH EXISTING SELECTIONS

Usually, users of the ArcMap application select features using three different approaches:
the Select By Attribute window, the Select By Location window, and selecting features interactively
using the Select Feature By Graphics (such as Rectangle) tool. In all three approaches, the result
selection will be highlighted on the map and accessible using the IFeatureSelection interface of
the FeatureLayer CoClass.

Rows in tables can be selected using the Select By Attribute window or by clicking on them when
the table is open. In this case, selected rows are highlighted in the Table window and can be
accessed using the Table Class’s ITableSelection interface.

Both IFeatureSelection and ITableSelection have a SelectionSet property which is of type
ISelectionSet.

Selected records can be referenced by SelectionSet as well as by cursor. The SelectionSet
instance has a very handy property that indicates the count of selected records: the Count property.

c08.indd 229c08.indd 229 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

230 ❘ CHAPTER 8 SUBSETS OF RECORDS

A FeatureLayer is associated with one SelectionSet instance, which represents selected features.
The SelectionSet property of the IFeatureSelection interface that is implemented by the
FeatureLayer class enables this relationship. SelectionSet will be empty if there is no selected
feature in the FeatureLayer. The following code reports the count of selected features in the selected
FeatureLayer in the status bar of ArcMap:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IStatusBar statusBar = ArcMap.Application.StatusBar;

if (mxdoc.SelectedItem is IFeatureLayer2)
{
 ILayer layer = mxdoc.SelectedLayer;
 IFeatureLayer2 featureLayer = layer as IFeatureLayer2;
 IFeatureSelection featureSelection = featureLayer as IFeatureSelection;
 ISelectionSet2 selectionSet = featureSelection.SelectionSet as ISelectionSet2 ;
 statusBar.Message[0] = string.Format("Number of selected Features in {0}: {1}",
 layer.Name, selectionSet.Count);

}

The same property on ITableSelection can be utilized to access
a SelectionSet of a Table.
else if (mxdoc.SelectedItem is ITable)
{
 ITable table = mxdoc.SelectedItem as ITable;
 IDataset dataset = table as IDataset;

 ITableSelection tableSelection = table as ITableSelection;
 ISelectionSet2 selectionSet = tableSelection.SelectionSet as ISelectionSet2;
 statusBar.Message[0] = string.Format("Number of selected Rows in {0}: {1}",
 dataset.Name, selectionSet.Count);
}

In addition to the Count property, the ISelectionSet2 interface provides an IDs property that
references an IEnumIDs object. This object contains an object identifi er of all selected records.
The following code shows the object identifi er of all selected rows or features in the status bar of
ArcMap:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IStatusBar statusBar = ArcMap.Application.StatusBar;
ISelectionSet2 selectionSet = null;
if (mxdoc.SelectedItem is IFeatureLayer2)
{
 ILayer layer = mxdoc.SelectedLayer;
 IFeatureSelection featureSelection = layer as IFeatureSelection;
 selectionSet = featureSelection.SelectionSet as ISelectionSet2;
}
else if (mxdoc.SelectedItem is ITable)
{
 ITable table = mxdoc.SelectedItem as ITable;
 ITableSelection tableSelection = table as ITableSelection;
 selectionSet = tableSelection.SelectionSet as ISelectionSet2;
}
string message = "";

c08.indd 230c08.indd 230 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Existing Selections ❘ 231

if (selectionSet != null)
{
 IEnumIDs enumIDs = selectionSet.IDs;
 int id = enumIDs.Next();
 while (id > 0)
 {
 message += id + ".";
 id = enumIDs.Next();
 }
}
statusBar.Message[0] = string.Format("IDs of selected Records: {0}",message);

In order to pull out records inside a SelectionSet, a Cursor object must be utilized. Cursor
objects are common in Database Management System (DBMS) programming.

Generally speaking, Cursors are objects that manage the traversal of successive records. It is
common to use a Cursor object to process records returned by the DBMS as a result of running
a query.

In ArcObjects, cursors have the same duty: to access individual records in a SelectionSet,
FeatureClass, Table, and any object representing a group of records. There are three different
types of cursors with the same interface. Each type of cursor is used for a different purpose and is
defi ned by the method used to create it.

Search cursors are used to return a subset of records for some type of read-only purpose, such
as calculating a statistic value or getting a count of records. In this chapter, you only explore the
search cursors that can be created using the Search() method. Other types of cursors (update and
insert cursors) are discussed in later chapters.

Cursor objects have a Fields property that allows you to access the same Field objects that are in
the parent table or FeatureClass from which the cursor was created. These Field objects are in the
same order in the cursor as they are in the parent table, and once you access the Fields collection,
you can reference a specifi c fi eld by using its index position.

As shown in Figure 8-1, in order to create a Cursor object you must have a table or FeatureClass
and a QueryFilter. What is not shown on this diagram is the capability of the SelectionSet class
to create a Cursor object (of course, in conjunction with a QueryFilter object).

The ISelectionSet2 interface has one method for creating a cursor: Search(). The Search()
method creates a cursor that is able to iterate through all selected records referenced by the
SelectionSet instance. In addition, using a QueryFilter instance, a subset of selected features or
rows can be pulled out from the SelectionSet. Consider the following code:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IStatusBar statusBar = ArcMap.Application.StatusBar;
ISelectionSet2 selectionSet = null;
if (mxdoc.SelectedItem is IFeatureLayer2)
{
 string message = null;
 ILayer layer = mxdoc.SelectedLayer;
 if (layer.Name == "U.S. States (Generalized)")
 {
 IFeatureLayer2 featureLayer = layer as IFeatureLayer2;

c08.indd 231c08.indd 231 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

232 ❘ CHAPTER 8 SUBSETS OF RECORDS

 IFeatureSelection featureSelection =
 featureLayer as IFeatureSelection;
 selectionSet = featureSelection.SelectionSet as ISelectionSet2;
 ICursor Cursor = null;
 //all features in a SelectionSet
 selectionSet.Search(null, true, out Cursor);
 IFeatureCursor featureCursor = Cursor as IFeatureCursor;

 //finding the index of the STATE_NAME field
 //the following two methods have the same result
 //first method
 //int fieldIndex = featureLayer.FeatureClass.FindField("STATE_NAME");
 //second method
 int fieldIndex = featureCursor.Fields.FindField("STATE_NAME");

 IFeature feature = featureCursor.NextFeature();
 while (feature != null)
 {
 message += feature.Value[fieldIndex] + ",";
 feature = featureCursor.NextFeature();
 }
 statusBar.Message[0] ="Selected States:"+ message;
 }
}

In order to pull out all the records inside a SelectionSet, a null value is provided as the QueryFilter.

NOTE The second input for the Search() method is a Boolean value that
specifi es whether memory occupied by the referenced record will be recycled. In
other words, if set as true (in this case, the Cursor object is called the recycling

cursor), each record referenced by the cursor will occupy the same memory
location as the other successive records and as a result will optimize the
read-only access. The reference to the fetched record will be lost when the
recycling cursor points to the next record (as a result of calling to the NextRow()
or NextFeature() methods). For this reason, records that are returned by a
recycling cursor must not be updated.

In summary, for read-only cursors (search cursors), setting this input parameter
as true results in better performance. Later this chapter explains when you
shouldn’t use recycling for search cursors. For update and insert cursors, this
parameter should be set as false. Chapter 13 furthur describes this topic.

QueryFilter and its subclass SpatialFilter are CoClasses and can be created with the new
keyword. A QueryFilter object has a WhereClause property, which is simply an expression that
defi nes an attribute query.

IQueryFilter2 queryFilter = new QueryFilterClass();
queryFilter.WhereClause="STATE_NAME='California'";

Actually, the WhereClause property is a condition part of a Structured Query Language (SQL)
statement. If you look at the Select By Attributes window, you will notice that ArcGIS provides
the fi rst part of the SQL statement and the second part (condition) should be provided by a
QueryFilter object. Near the bottom of Figure 8-2, you can see SELECT * FROM states WHERE.

c08.indd 232c08.indd 232 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 233

FIGURE 8-2 FIGURE 8-3

FIGURE 8-4

This statement is SQL, so you have to adhere to the rules of SQL, such as enclosing text literals in
quotations. In addition, you can take advantage of SQL in the condition part of the query. Consider
the following example: If you want to select California, Colorado, Georgia, Maryland, Nevada, and
New York states you should provide the condition in the Select By Attributes window, as shown in
Figure 8-3.

Instead, you can make use of the in operator to select all the
mentioned states, as shown in Figure 8-4.

SELECTING ROWS AND FEATURES

In order to select rows or features based on attribute queries,
you need to create a new instance of QueryFilter and
use the ITableSelection or IFeatureSelection interfaces.
The following code snippet fi rst fi nds the U.S. Cities layer and
then highlights all the cities that have the Texas value in their
STATE_NAME column:

c08.indd 233c08.indd 233 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

234 ❘ CHAPTER 8 SUBSETS OF RECORDS

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IMap map = mxdoc.FocusMap;
for (int i = 0; i < map.LayerCount; i++)
{
 if (map.Layer[i].Name == "U.S. Cities")
 {
 IFeatureLayer2 featureLayer = map.Layer[i] as IFeatureLayer2;
 IFeatureSelection featureSelection = featureLayer as IFeatureSelection;

 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = "STATE_NAME = 'Texas'";

 featureSelection.SelectFeatures(qF,
 esriSelectionResultEnum.esriSelectionResultNew, false);
 mxdoc.ActiveView.Refresh();
 }
}

The second parameter of the SelectFeatures() method specifi es how the result of the selection
is created in relation to the current selection. As users of ArcGIS for Desktop, you can see various
alternatives in the Method ComboBox, which has four members for creating a new selection,
adding to the current selection, removing from the current selection, and selecting from the current
selection.

As a developer, you access the same methods through the esriSelectionResultEnum enumeration,
which has fi ve members. The additional member (esriSelectionResultXOR) performs an exclusive
OR operation with the existing selection.

For selecting features based on their location, you have to resort to the SpatialFilter CoClass.
SpatialFilter has a Geometry property, which is a basis for spatial search. It is of type
IGeometry, which is a parent interface of all types in the geometry library. That means that you can
use geometry of all feature types for this property.

The SpatialRel property specifi es the type of spatial relationship to be used in selecting
features. SpatialRel is of type esriSpatialRelEnum and contains members for various spatial
relationships. The following Try It Out uses the visible extent of a map as geometry and selects all
the features of all visible layers inside that.

TRY IT OUT Selecting Visible Features of Visible Layers (VisibleFeatures.zip)

 1. Create a new ArcMap Add-in project. Name the solution SelectionAddIn. In the Add-Ins Wizard,
provide the necessary information as shown in Figure 8-5 and then click Finish.

c08.indd 234c08.indd 234 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 235

 2. Add ESRI.ArcGIS.Carto, ESRI.ArcGIS.Geodatabase, and ESRI.ArcGIS.Geometry references to
your project and type the following using directives at the top of the SelectVisibleFeatures
.cs code window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.ArcMapUI;

 3. Add the following code to the OnClick() method of the button:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IMap map = mxdoc.FocusMap;
IEnumLayer enumLayer = map.Layers;
ILayer layer = enumLayer.Next();

ISpatialFilter spatialFilter = new SpatialFilter();
spatialFilter.Geometry = (map as IActiveView).Extent;
spatialFilter.SpatialRel = esriSpatialRelEnum.esriSpatialRelContains;

while (layer != null)
{
 if (layer is IFeatureLayer2)
 {
 if (layer.Visible)
 {
 IFeatureLayer2 featureLayer = layer as IFeatureLayer2;
 IFeatureSelection featureSelection = featureLayer as IFeatureSelection;

FIGURE 8-5

c08.indd 235c08.indd 235 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

236 ❘ CHAPTER 8 SUBSETS OF RECORDS

 featureSelection.SelectFeatures(spatialFilter,
 esriSelectionResultEnum.esriSelectionResultNew, false);
 }
 }
 layer = enumLayer.Next();
}
mxdoc.ActiveView.Refresh();

How It Works

As mentioned in Chapter 6, you can get or set the visible extent of a map using the Extent property of
the IActiveView interface. This property is of type IEnvelope, which is the minimum bounding
rectangle of a geometry type. All geometry objects have an associated Envelope (this is applicable even
for point features). In this Try It Out, you select features that are completely contained by the visible
area of the map.

Most of the time, the geometry or shape of a feature is used as the Geometry property of a
SpatialFilter instance. The geometry of a feature can be accessed through the Shape property of
the IFeature interface. The following code snippet fi rst selects Colorado and uses its geometry to
select rivers that intersect its shape:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IMap map = mxdoc.FocusMap;
IGeometry geometry = null;
IFeatureSelection featureSelection = null;
for (int i = 0; i < map.LayerCount; i++)
{
 ILayer layer = map.Layer[i];
 if (map.Layer[i].Name == "U.S. Rivers (Generalized)")
 {
 IFeatureLayer2 featureLayer = map.Layer[i] as IFeatureLayer2;
 featureSelection = featureLayer as IFeatureSelection;
 }
 else if (layer.Name == "U.S. States (Generalized)")
 {
 //selects Colorado state and gets the shape of it
 IFeatureLayer2 featureLayer = map.Layer[i] as IFeatureLayer2;
 IFeatureSelection statesSelection = featureLayer as IFeatureSelection;

 IQueryFilter2 queryFilter = new QueryFilterClass();
 queryFilter.WhereClause = "STATE_NAME='Colorado'";

 statesSelection.SelectFeatures(queryFilter,
 esriSelectionResultEnum.esriSelectionResultNew, true);
 ICursor cursor = null;
 statesSelection.SelectionSet.Search(null, true, out cursor);
 IFeatureCursor featureCursor = cursor as IFeatureCursor;
 //get the geometry needed for SpatialFilter
 IFeature colorado = featureCursor.NextFeature();

c08.indd 236c08.indd 236 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 237

 geometry = colorado.Shape;

 }

}

ISpatialFilter spatialFilter = new SpatialFilter();
spatialFilter.Geometry = geometry;
spatialFilter.SpatialRel = esriSpatialRelEnum.esriSpatialRelIntersects;

featureSelection.SelectFeatures(spatialFilter,
esriSelectionResultEnum.esriSelectionResultNew, false);
mxdoc.ActiveView.Refresh();

For clearing selected records the Clear() method of IFeatureSelection or ITableSelection
interfaces should be called. Using the ClearSelection() method of IMap interface, all selected
Features as well as selected rows inside a map will be cleared.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 mxdoc.FocusMap.ClearSelection();
 mxdoc.ActiveView.Refresh();

Accessing a Subset of Records

As an ArcGIS developer, you can access a subset of records without highlighting them in a map.
As shown in Figure 8-1, in conjunction with a QueryFilter object (or its spatial subclass) the
IFeatureClass and ITable interfaces are able to directly create a FeatureCursor and Cursor,
respectively. In this case, there is no need to create a Cursor object using the SelectionSet Class.
The following code reports the number of cities inside Texas without highlighting them on the map.

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
for (int i = 0; i < mxdoc.FocusMap.LayerCount; i++)
{
 ILayer layer = mxdoc.FocusMap.Layer[i];
 if (layer.Name == "U.S. Cities")
 {
 IFeatureLayer2 featureLayer = layer as IFeatureLayer2;
 IFeatureClass featureClass = featureLayer.FeatureClass;

 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = "STATE_NAME = 'Texas'";
 IFeatureCursor featureCursor = featureClass.Search(qF, true);
 IFeature feature = featureCursor.NextFeature();
 int count = 0;
 while (feature != null)
 {
 count++;
 feature = featureCursor.NextFeature();
 }
 ArcMap.Application.StatusBar.Message[0] = count + " cities are inside
 Texas state";
 }
}

c08.indd 237c08.indd 237 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

238 ❘ CHAPTER 8 SUBSETS OF RECORDS

In most cases, attribute and spatial queries must be combined to get the most out of queries. In
the next Try It Out, you use a new type of ArcObjects component: a dockable window. Creating
a dockable window in an add-in template is a little tricky, so you fi rst create a dockable window
component using the Extending ArcObjects template, and then learn about a little difference which
should be considered when using add-in templates.

TRY IT OUT Dockable Window for Selection (DockableSelection.zip)

Before you start, take a look at what exactly a dockable window is. A dockable window is a window
inside ArcGIS for Desktop applications which contains other Windows controls and can be used for
various purposes. A common example of a dockable window is the Table Of Contents window in
ArcMap, which provides different tabs (Contents view) for accessing various properties of added data.
For example, it contains a TreeView control to display geospatial data in tree structure.

As the name suggests, a dockable window can be moved and docked (that is, attached at various places)
within the application, or it can fl oat. Usually a separate button in the user interface is responsible for
showing or hiding it.

 1. Start a new project in Visual Studio and name it DockableSelection. Choose the Extending
ArcObjects template, select Class Library (ArcMap) as shown in Figure 8-6, and click OK.

FIGURE 8-6

 2. In the ArcGIS Project Wizard, add ArcMapUI, Carto, Geodatabase, and Geometry references to
your project, as shown in Figure 8-7, and click the Finish button.

c08.indd 238c08.indd 238 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 239

FIGURE 8-7

After a few seconds, the Wizard will create a default class fi le for you. You don’t need this class,
so you can delete it permanently. Right-click on your project and from the Add submenu, select
New Item. In the Extending ArcObjects template, select the Dockable Window (Desktop) item
and name it selectionDockable.cs, as shown in Figure 8-8, then click the Add button.

FIGURE 8-8

c08.indd 239c08.indd 239 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

240 ❘ CHAPTER 8 SUBSETS OF RECORDS

 3. Select the Desktop ArcMap item in the newly opened
window, as shown in Figure 8-9, and click OK.

 4. Visual Studio adds an empty UserControl and
a command button to the project. The UserControl is
used for adding necessary Windows controls and
the functionality behind them. The button is used
for displaying the dockable window in the user
interface of ArcMap. Open the code for the
button (selectionDockableCommand.cs),
and modify the public selectionDockableWindow
method to match Figure 8-10. That is all the
modifi cation in the button’s code. Leave all
the remaining code as is.

FIGURE 8-9

FIGURE 8-10

 5. In Solution Explorer, double-click on the selectionDockable.cs fi le to open its designer. At
the moment, it just contains a single label (LabelPlaceHolder) control. Clear its text property and
change its size to 250;570.

 6. Add three Button controls, one ListBox control, and a Label control to the LabelPlaceHolder and
name them btnPopulateList, btnSelect, btnClear, lstStates, and lblReport. Change their properties
as listed in Table 8-1.

TABLE 8-1: Properties of Controls

CONTROL PROPERTY VALUE

btnPopulateList Text Populate List of States

lstStates Size 210;200

btnSelect Text Select Cities in the Selected State

c08.indd 240c08.indd 240 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 241

btnClear Text Clear Selection

lblReport AutoSize False

lblReport Size 210;100

Position the controls as shown in Figure 8-11.

 7. Double-click on btnPopulateList to go to the code window of the
dockable window. At the top of the code window, type the following
using directives:

using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geometry;

 8. Above the event handler of btnPopulate list, add the declaration of
three variables.

string selectedState = null;
 IFeatureLayer2 citiesFL = null;
 IFeatureLayer2 statesLayer = null;

 9. Add the names of all states from the U.S. States FeatureLayer
to a Listbox control. To perform this task, you need to create a
FeatureCursor for the mentioned layer and iterate through all
features, as shown in the following code:

private void btnPopulateList_Click(object sender, EventArgs e)
 {
 lstStates.Items.Clear();
 IMxDocument mxdoc = m_application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;

 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();

 while (layer != null)
 {
 if (layer is IFeatureLayer2 && layer.Name == "U.S. States
 (Generalized)")
 {
 statesLayer = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }

 if (statesLayer == null)
 { return; }

 IFeatureCursor statesFCursor = statesLayer.FeatureClass.Search(null,
 true);
 int state_nameIndex = statesFCursor.Fields.FindField("STATE_NAME");

FIGURE 8-11

c08.indd 241c08.indd 241 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

242 ❘ CHAPTER 8 SUBSETS OF RECORDS

 IFeature state = statesFCursor.NextFeature();

 if (state_nameIndex < 0)
 { return; }

 while (state != null)
 {
 lstStates.Items.Add(state.Value[state_nameIndex]);
 state = statesFCursor.NextFeature();
 }
 }

 10. Press Shift+F7 or select View Designer in Solution Explorer to go to the designer window. This
time, double-click lstStates to create skeleton code for the SelectedIndexChanged event handler.
In this event handler, you want to fi gure out which state the user has selected.

 private void lstStates_SelectedIndexChanged(object sender, EventArgs e)
 {
 if (lstStates.SelectedIndex >= 0)
 {
 selectedState = lstStates.SelectedItem.ToString();
 }
 }

 11. Again in the designer window, double-click on btnSelect to create stub code for handling the click
event. In this handler, you want to perform a selection based on the geometry of the selected state.
In other words, you want to select all cities contained by a selected state. As a result, you need
to fi rst fi nd the state feature that was selected by the user and use its shape as the geometry of a
SpatialFilter object. Also you want to zoom to selected cities and calculate a summation of
their population. The following code illustrates the click event handler of btnSelect.

private void btnSelect_Click(object sender, EventArgs e)
 {
 IMxDocument mxdoc = m_application.Document as IMxDocument;

 IFeatureClass stateFC = statesLayer.FeatureClass;
 IQueryFilter2 qF = new QueryFilterClass();
 qF.WhereClause = string.Format("STATE_NAME='{0}'", selectedState);
 IFeatureCursor stateFCursor = stateFC.Search(qF, true);
 //just one state is selected
 IFeature selectedStateFeature = stateFCursor.NextFeature();
 IGeometry5 shapeOfSelectedState = selectedStateFeature.Shape as
 IGeometry5;

 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();

 while (layer != null)
 {
 if (layer.Name == "U.S. Cities" && layer is IFeatureLayer2)
 {
 citiesFL = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();

c08.indd 242c08.indd 242 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 243

 }

 ISpatialFilter sF = new SpatialFilterClass();
 sF.Geometry = shapeOfSelectedState;
 sF.SpatialRel = esriSpatialRelEnum.esriSpatialRelContains;

 IFeatureSelection citiesFeatureSelection = citiesFL as
 IFeatureSelection;
 citiesFeatureSelection.SelectFeatures(sF,
 esriSelectionResultEnum.esriSelectionResultNew, false);

 ICursor citiesCursor = null;
 citiesFeatureSelection.SelectionSet.Search(null, true, out
 citiesCursor);
 int pop1990Index = citiesCursor.Fields.FindField("POP1990");
 long totalPopulation = 0;
 IRow city = citiesCursor.NextRow();
 while (city != null)
 {

 totalPopulation += long.Parse(city.Value[pop1990Index].ToString());

 city = citiesCursor.NextRow();
 }

 //zoom to selected features
 mxdoc.ActiveView.Extent = shapeOfSelectedState.Envelope;
 //IFeatureClass citiesFC = citiesFL.FeatureClass;
 mxdoc.ActiveView.Refresh();

 lblReport.Text = String.Format("Number of Selected Cities: {0} \n",
 citiesFeatureSelection.SelectionSet.Count);
 lblReport.Text += String.Format("Total Population: {0}",
 totalPopulation);

 }

 12. When a user clicks the btnClear button, the selected features and selected states in the ListBox
should be cleared and the extent of the map should be restored to the envelope of all states.
Double-click the btnClear button in Designer view and add the following code:

 private void btnClear_Click(object sender, EventArgs e)
 {
 selectedState = "";
 lstStates.ClearSelected();
 lblReport.Text = "";
 //todo: clear selected features in specified layer
 (citiesFL as IFeatureSelection).Clear();

 IMxDocument mxdoc = m_application.Document as IMxDocument;
 if (statesLayer != null)
 {
 mxdoc.ActiveView.Extent = (statesLayer as ILayer).AreaOfInterest;
 }
 mxdoc.ActiveView.Refresh();
 }

c08.indd 243c08.indd 243 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

244 ❘ CHAPTER 8 SUBSETS OF RECORDS

 13. Just one remaining point: The caption of the dockable window is defi ned in the region called
IDockableWindowDef Members. This region can be found just above the code that you write in
this Try It Out. (See Figure 8-12.)

FIGURE 8-12

Expand this region, and in the IDockableWindowDef.Caption replace the default string
(my C# Dockable Window) with Selection Dockable window.

 14. Run your project. After a few seconds, ArcMap will appear. You have to use the Customize
window for adding the button to the user interface of ArcMap. So in the Commands tab, select
the ArcGISBook category and you will see a button with a clever rabbit icon. Drag and drop
it somewhere appropriate in the user interface (such as any toolbar or menu). Add the USA
FeatureDataset of TemplateData.gdb and test the functionality of the dockable window. You can
change the button’s icon using basic tools provided by Visual Studio.

How It Works

The dockable window is a fl exible component which can contain many controls in order to perform
useful tasks. In this Try It Out, you combined attribute and spatial subsets of features to select cities in
a selected state. Usually, a button should provide functionality for displaying a dockable window in the
user interface.

When you create a dockable window using the Extending ArcObjects template, a button will be created
automatically. But this is not the case when using the Desktop Add-Ins template. That is why you use
the Extending ArcObjects project template. But with little effort, you can achieve the same result
with the Desktop Add-ins template.

c08.indd 244c08.indd 244 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 245

Simple Statistics of Features

Sometimes you need to calculate simple statistics such as summation, standard deviation, and
average for a numerical fi eld in a table or a FeatureClass. It is possible to iterate through all records
and calculate these statistics, but there are two classes in the ArcObjects library that can simplify
this task. These two classes and their relationships are shown in Figure 8-13. The DataStatistics
class can be used to retrieve simple statistics of a single fi eld. As shown in Figure 8-13, in order
to calculate statistics of a specifi c fi eld, an instance of the Cursor object is needed. After setting
the Field and Cursor properties, the statistics of the specifi ed fi eld can be accessed through the
Statistics property.

The Statistics property is of type IStatisticsResults, which is implemented by the
BaseStatistics CoClass.

FIGURE 8-13

GeodatabaseObjectModel

Cursor

DataStatistics

IDataStatistics

Cursor: ICursor

Field: String

Statistics: IStatisticsResults

IApplication: IUnknown

BaseStatistics

IStatisticsResults

Count: Long

Maximum: Double

Minimum: Double

IStatisticsResults: IUnknown

StandardDeviation:
Double

Sum: Double

SystemObjectModel

In the next Try It Out, you create a dockable window add-in that calculates statistics for numerical
fi elds.

c08.indd 245c08.indd 245 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

246 ❘ CHAPTER 8 SUBSETS OF RECORDS

TRY IT OUT Dockable Window for Statistics (DockableWindowStatistics.zip)

 1. Create a new project in Visual Studio. Click on the Desktop Add-Ins template and select the
ArcMap Add-in. Name your add-in DockableWindowStatistics and click the OK button.

 2. As always, provide your information and Click Next in the ArcGIS Add-Ins Wizard. Select
Dockable Windows as the type of the add-In, set other fi elds as shown in Figure 8-14, and click
Finish. Note that you don’t specify a category for the dockable window component.

FIGURE 8-14

 3. In Solution Explorer, double-click on the DockableWinStatistics component to open its designer.
At the moment, it is an empty UserControl. Using the Toolbox window, add two buttons, one
ListBox, one ComboBox, and a Label to the UserControl, and name them btnPopulateLayerList,
btnCalculate, lstLayers, cboNumFields, and lblReport, respectively. Change their properties as
listed in Table 8-2.

TABLE 8-2: Properties of Controls

CONTROL PROPERTY VALUE

btnPopulateLayerList Text List of Layers

btnCalculate Text Calculate Statistics

lblReport BorderStyle FixedSingle

lblReport AutoSize False

c08.indd 246c08.indd 246 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 247

Position the controls as shown in Figure 8-15.

 4. Add Carto and Geodatabase references to your project. Double-click on
btnPopulateLayerList to go to the code window of the dockable window.
At the top of the code window, type the following using directives:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.esriSystem;

 5. Above the event handler of btnPopulateLayerList, add the declaration of
one variable to be shared between some blocks of code.

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;

 6. Click on the btnPopulateLayerList results to add the names of all
FeatureLayer objects inside the Table Of Contents window to the
ListBox. The event handler should be similar to the following code:

private void btnPopulateLayerList_Click(object sender, EventArgs e)
{
 lstLayers.Items.Clear();
 cboNumFields.Tag = null;

 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();

 while (layer != null)
 {
 if (layer is IFeatureLayer2)
 {
 lstLayers.Items.Add(layer.Name);
 }
 layer = enumLayer.Next();
 }
}

 7. Suppose a user clicks the btnPopulateLayerList and a list of all existing layers is displayed for him
or her. The next step is to provide logic to determine which item (which represents the name of
a layer) of ListBox (lstLayers) the user selects. Then you need to add the names of all numerical
fi elds of the FeatureClasses associated with the selected FeatureLayer and add them to the
ComboBox. Press Shift+F7 to go to the designer window of Visual Studio and double-click on
lstLayers to create the stub code for its SelectedIndexChanged event handler. Following is the
complete code for this event handler:

 private void lstLayers_SelectedIndexChanged(object sender, EventArgs e)
 {
 cboNumFields.Items.Clear();
 string selectedLayerName = null;
 if (lstLayers.SelectedIndex >= 0)
 {
 selectedLayerName = lstLayers.SelectedItem.ToString();
 }

 if (selectedLayerName == null)

FIGURE 8-15

c08.indd 247c08.indd 247 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

248 ❘ CHAPTER 8 SUBSETS OF RECORDS

 { return; }

 //getting all the numerical fields
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer2 featureLayer = null;

 while (layer != null)
 {
 if (layer.Name == selectedLayerName)
 {
 featureLayer = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }

 IFeatureClass FC = featureLayer.FeatureClass;
 for (int i = 0; i < FC.Fields.FieldCount; i++)
 {
 IField field = FC.Fields.Field[i];
 if (field.Type == esriFieldType.esriFieldTypeDouble || field.Type ==
 esriFieldType.esriFieldTypeInteger || field.Type ==
 esriFieldType.esriFieldTypeSingle || field.Type ==
 esriFieldType.esriFieldTypeSmallInteger)
 {
 cboNumFields.Items.Add(field.Name);
 }
 //to be able to reach to the parent FeatureLayer
 cboNumFields.Tag = (featureLayer as ILayer).Name;
 }
 }

Note that you use the Tag property of the ComboBox in order to remember the parent
FeatureLayer.

 8. At this point, you have the names of all numerical fi elds so users can select one of them from the
ComboBox. All that is needed is to calculate the statistics using the DataStatistics CoClass.
The following code illustrates the steps necessary to perform this task. Go to the designer window
of Visual Studio and double-click btnCalculate to create the event handler for click event, then
insert the code inside it.

 private void btnCalculate_Click(object sender, EventArgs e)
 {
 string selectedFieldName = null;
 if (cboNumFields.SelectedIndex >= 0)
 {
 selectedFieldName = cboNumFields.SelectedItem.ToString();
 }

 if (selectedFieldName == null)
 { return; }

 if (cboNumFields.Tag == null)
 {

c08.indd 248c08.indd 248 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 249

 lblReport.Text = "";
 return;
 }

 string featureLayerName = cboNumFields.Tag.ToString();

 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer2 featureLayer = null;

 while (layer != null)
 {
 if (layer.Name == featureLayerName)
 {
 featureLayer = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }

 if (featureLayer == null)
 { return; }

 IFeatureClass FC = featureLayer.FeatureClass;
 IFeatureCursor featureCursor = FC.Search(null, true);

 IDataStatistics dataStatistics = new DataStatisticsClass();
 dataStatistics.Field = selectedFieldName;
 dataStatistics.Cursor = featureCursor as ICursor;

 IStatisticsResults sR = dataStatistics.Statistics;

 lblReport.Text = string.Format("Count: {0}\n", sR.Count);
 lblReport.Text += string.Format("Min: {0:#.00}\n", sR.Minimum);
 lblReport.Text += string.Format("Max: {0:#.00}\n", sR.Maximum);
 lblReport.Text += string.Format("Sum: {0:#.00}\n", sR.Sum);
 lblReport.Text += string.Format("Average: {0:#.00}\n", sR.Mean);
 lblReport.Text += string.Format("Standard Deviation: {0:#.00}\n",
 sR.StandardDeviation);
 }

 9. The dockable window is ready, but you need a button to show it on ArcMap’s user interface.
Right-click on your project and select New Item from the Add submenu. Choose Add-in
Component and name it showDockableWinStatistics, then click the Add button.

 10. The ArcGIS Add-Ins Wizard appears. Provide settings for the new button as displayed in
Figure 8-16 and click Finish.

c08.indd 249c08.indd 249 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

250 ❘ CHAPTER 8 SUBSETS OF RECORDS

 11. Double-click showDockableWinStatistics.cs in the Solution Explorer window and add the
following using directives at the top of the newly added button’s code window:

using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Framework;

 12. Add the following lines of code for getting a reference to the dockable window and providing it to
the OnClick() method of the newly created button:

UID dockableWinUID = new UIDClass();
dockableWinUID.Value = ThisAddIn.IDs.DockableWinStatistics;

IDockableWindow statsticsDockableWin =
ArcMap.DockableWindowManager.GetDockableWindow(dockableWinUID);
statsticsDockableWin.Show(true);

 13. That is it! Run your project and test it. Add the button to ArcMap’s user interface using the
Customize window. You can fi nd the button in the ArcGISBook commands category.

How It Works

The UID CoClass is usually used for referencing the Globally Unique Identifi er (GUID) of interfaces
and CoClasses in ArcObjects. For example, you can get to the built-in tools and commands using their
UIDs. You explore this topic in Chapter 13. In this Try It Out, you get at the dockable window add-in
using the UID CoClass. Then you use the IDockableWindow interface to show the referenced dockable
window. As you have noticed, the logic for showing the dockable window was quite easy but you have
to provide a button for this logic. This is the main difference between developing a dockable window
using add-ins and Extending ArcObjects templates.

FIGURE 8-16

c08.indd 250c08.indd 250 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 251

Some Important Points about Using Cursors

Cursors play a major role in working with geospatial data, so understanding their behavior as
described in this section is quite important.

Recycling

As previously stated, recycling is a characteristic of cursors that determines whether rows (or
features) retrieved by a cursor occupy the same location in memory.

In general, recycling should be enabled for referencing one feature only, although it might seem
that you should enable recycling for any kind of read access. Also, in certain situations when using
search cursors you have to disable recycling. As a rule of thumb for read access, whenever you need
to reference more than one row (or feature) you have to disable recycling, otherwise you might get
unexpected behavior. In other words, when you want to work directly with the rows (or feature)
retrieved by the cursor, enabling recycling will always result in retrieving a reference to just one row
(or feature), which is the last retrieved row (or feature). The following code creates a recycling search
cursor and retrieves three features from the fi rst FeatureLayer in the active Data Frame. Since the
cursor is recycling, all the retrieved features point to the feature3 object (the last feature retrieved
by the cursor).

void testRecycling()
 {
 IMxDocument mxdoc = ArcMap.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer2 fLayer = null;
 while (layer != null)
 {
 if (layer is IFeatureLayer2)
 {
 fLayer = layer as IFeatureLayer2;
 break;
 }
 layer = enumLayer.Next();
 }
 if (fLayer == null)
 { return; }

 IFeatureClass fClass = fLayer.FeatureClass;
 bool recyclingEnabled = true;
 IFeatureCursor featureCursor = fClass.Search(null, recyclingEnabled);
 IFeature feature1 = null;
 IFeature feature2 = null;
 IFeature feature3 = null;

 feature1 = featureCursor.NextFeature();
 feature2 = featureCursor.NextFeature();
 feature3 = featureCursor.NextFeature();
 ESRI.ArcGIS.Framework.MessageDialogClass msgBox =
 new ESRI.ArcGIS.Framework.MessageDialogClass();

c08.indd 251c08.indd 251 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

252 ❘ CHAPTER 8 SUBSETS OF RECORDS

 string message = "OID of Feature1 :" + feature1.OID + "\n";
 message += "OID of Feature2 :" + feature2.OID + "\n";
 message += "OID of Feature3 :" + feature3.OID + "\n";
 msgBox.DoModal("Recycling is " + recyclingEnabled, message, "OK",
 "", ArcMap.Application.hWnd);
 }

The result of running the preceding code is shown in
Figure 8-17.

If you change the recyclingEnabled variable to false the
result of the preceding code is shown in Figure 8-18.

So if you don’t need more than one row (or feature) to be
referenced at once, it is possible to use both recycling and
non-recycling cursors, but in this case recycling cursors
provide a more effi cient approach. If you need to reference
more than one feature at once and keep the distinct
references in memory you need non-recycling cursors. In
this case, using recycling cursors might result in inaccurate
results. The next chapter provides an example of the non-
recycling search cursors.

NOTE In order to run the preceding code, you need to add ESRI.ArcGIS.Carto
and ESRI.ArcGIS.Geodatabase references to your project.

Memory Management

Some objects require explicit execution of code to release resources such as open fi les, database
connections, operating system handles, and other unmanaged objects. In .NET terminology, this is
called disposal. The .NET Framework defi nes a special interface (IDisposable) for types requiring
a cleanup method. In the .NET realm, disposal is in charge of cleaning up the handles for open fi les,
database connections, and other unmanaged objects.

The managed memory occupied by unused objects must also be reclaimed at some point; this
function is known as garbage collection and is performed by the Common Language Runtime
(CLR). Garbage collection occurs behind the scenes, without any programmer intervention and in
a nondeterministic way. (Nondeterministic means that it is not known when exactly the garbage
collector will reclaim the memory.) You can think of it like this: When no reference to an object
exists, that object (memory allocated by that object) is marked as garbage. The actual garbage
collection process is performed sporadically during execution of your .NET code.

It is possible to call the Collect() method of the System.GC class to request garbage collection
manually. But because of the way the garbage collector works in the .NET Framework, explicitly
requesting garbage collection doesn’t mean that the memory will be reclaimed as soon as you
request garbage collection. Also, manually initiating garbage collection is not recommended for
most situations, since it can lead to ineffi ciencies.

FIGURE 8-17

FIGURE 8-18

c08.indd 252c08.indd 252 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting Rows and Features ❘ 253

Disposal differs from garbage collection in that disposal is usually explicitly initiated while garbage
collection is totally automatic. In other words, the developer takes care of such things as releasing
fi le handles, database connections, and operating system resources while the CLR takes care of
releasing memory.

When you are working with pure .NET code (which is called managed code) you almost never care
about how the .NET Framework manages the memory. The IDisposable interface has a single
method: Dispose(). The Dispose() method is in charge of releasing a type’s unmanaged resources
such as fi le handles and database connections. Interestingly, some types in the .NET Framework
have a Close() method for the same purpose. In Chapter 4, you worked with the FileStream,
StreamReader, and StreamWriter types to access fi les. All these types implement IDisposable. In
addition to the Dispose() method they provide the Close() method for the same purpose.

NOTE If you are interested in a more in-depth description of memory manage-
ment in the .NET Framework, good reference books include Professional C#

2012 and .NET 4.5 by Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson, and
Morgan Skinner and C# 5.0 in a Nutshell: The Defi nitive Reference by Joseph
Albahari and Ben Albahari.

There are also some types in ArcObjects that need explicit disposal, in particular cursors (and
FeatureCursors). As a rule of thumb, when performing any operation with a cursor, you must
release the resources it occupies. If you don’t release the resources, unexpected behaviors can occur.
Consider the following code, which creates 256 FeatureCursors without disposing them:

 IMxDocument mxdoc = ArcMap.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer2 fLayer = null;
 while (layer != null)
 {
 if (layer is IFeatureLayer2)
 {
 fLayer = layer as IFeatureLayer2;
 break;
 }
 layer = enumLayer.Next();
 }
 if (fLayer == null)
 { return; }

 IFeatureClass featureClass = fLayer.FeatureClass;
 int iterator = 255;
 try
 {
 for (int i = 0; i < iterator; i++)
 {
 //creating a new featureCursor
 IFeatureCursor featureCursor = featureClass.Search(null, true);
 //using featureCursor

c08.indd 253c08.indd 253 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

254 ❘ CHAPTER 8 SUBSETS OF RECORDS

 }
 }
 catch (Exception ex)
 {
 new ESRI.ArcGIS.Framework.MessageDialogClass().DoModal(ex.Source,
 ex.Message, "", "", ArcMap.Application.hWnd);
 }

If you test this code for a feature class in a personal
geodatabase you will get the error shown in Figure 8-19.
The reason for this error is that by design, a maximum
of 255 open connections are possible for a personal
geodatabase (Microsoft Jet engine). In other words, any
attempt to open more than 255 connections results in an
error for this type of data source.

To overcome this issue you must dispose of any open cursors
when there is no need for them using the Marshal class’s
ReleaseComObject() method. You can fi nd the Marshal class in the System.Runtime
.InteropServices namespace. If you replace the for block in the preceding code with the
following for block you will not get an error when connecting to a personal geodatabase:

 for (int i = 0; i < iterator; i++)
 {
 //creating a new featureCursor
 IFeatureCursor featureCursor = featureClass.Search(null, true);
 //using featureCursor then dispose it
 System.Runtime.InteropServices.Marshal.ReleaseComObject(featureCursor);
 }

DISPLAYING SUBSETS OF GEOSPATIAL DATA

To this point in this chapter, you have learned how to use attribute queries as well as spatial queries
to select and make a subset of features. Sometimes you need to use an attribute query to just display
subsets of features. In order to perform this task, users of ArcGIS for Desktop applications can
use the Defi nition Query tab of the Layer Properties window. Developers have the same capability
through the IFeatureLayerDefinition2 interface, which is implemented by the FeatureLayer
CoClass. This interface has a DefinitionExpression property that should be used for defi ning
the query expression (same as the WhereClause property of a QueryFilter). The following code
snippet displays states which have populations that exceed six million:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 for (int i = 0; i < map.LayerCount; i++)
 {
 ILayer layer = map.Layer[i];
 if (layer.Name == "U.S. States (Generalized)")
 {
 IFeatureLayerDefinition2 flDefinition =
 layer as IFeatureLayerDefinition2;

FIGURE 8-19

c08.indd 254c08.indd 254 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 255

 flDefinition.DefinitionExpression =
 "POP2000 > 6000000";
 mxdoc.ActiveView.Refresh();
 }
 }

In order to display all the features, you can simply provide an empty string for the
DefinitionExpression property.

SUMMARY

Making a subset of geospatial data is one of the most common tasks in ArcObjects programming.
SelectionSet, Cursor, SpatialFilter, and QueryFilter are central classes for performing this
task. Criteria for selection are defi ned using the QueryFilter or SpatialFilter classes. References
to selected features or rows are managed by the SelectionSet and Cursor classes. As you have
seen, the search cursor is used for high performance read-only access to records. In addition, this
chapter has shown how a Cursor object can be used for calculating simple statistics for a numerical
fi eld. You see more about cursors in the remaining chapters of this book.

EXERCISES

 1. What is a search cursor?

 2. In order to calculate simple statistics using the DataStatistics CoClass, what properties of

IDataStatistics should be set?

 3. Which class is used for referencing the unique identifi er of interfaces and CoClasses in

ArcObjects?

 4. Write the code to perform switch selection for the cities FeatureLayer. (You can use the

ISelectionSet interface for this task.)

You will fi nd the answers to these exercises in this book’s appendix.

c08.indd 255c08.indd 255 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

256 ❘ CHAPTER 8 SUBSETS OF RECORDS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Recycling If the recycling parameter (which is one of the Search() method’s input

parameters) is set as true, each record referenced by the cursor will occupy

the same memory address as the other successive records and as a result

optimize the read-only access. In this case, a cursor is called the recycling

cursor.

The reference to the retrieved record will be lost when the recycling cursor

points to the next record. For this reason, records which were returned by the

recycling cursor must not be updated.

Cursor An object which is in charge of accessing individual records in a SelectionSet,

FeatureClass, Table, and any object representing a group of records. There

are three diff erent types of cursors with three diff erent functionalities. All the

diff erent kinds of cursors implement the same interface. In other words, they

have the same methods.

Selecting and

highlighting

features on map

The IFeatureSelection interface must be used in conjunction with a

QueryFilter or a SpatialFilter object.

Iterating through

subsets of

features

IFeatureClass interface should be used in conjunction with a QueryFilter or a

SpatialFilter object to create a cursor.

Displaying

subsets of

geospatial data

IFeatureLayerDefi nition2 interface should be used with providing a criterion

for Features to be displayed.

Disposing of

cursors

As a rule of thumb, when performing any operation with a cursor, you

must release the resources it occupies. If you don’t release the resources,

unexpected behaviors might occur. You can dispose of any open cursor when

there is no need for it using the Marshal class’s ReleaseComObject()

method. You can fi nd the Marshal class in the System.Runtime

.InteropServices namespace.

c08.indd 256c08.indd 256 25/02/13 12:12 PM25/02/13 12:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Constructing and Using
the Geometry of Features

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Exploring object model diagrams for geometry

 ➤ Relationships between segments, paths, rings, polylines, and

polygons

 ➤ Displaying geometries without persisting them

 ➤ Creating and drawing diff erent types of geometries

 ➤ Creating interior and exterior rings for polygons

 ➤ Performing common geoprocessing operations

 ➤ Calculating distance between geometries

 ➤ Examining the spatial relationships between geometries

 ➤ Finding length, area, and centroid of geometries

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter09 folder and
is individually named according to the names throughout the chapter.

One of the fi rst steps in making any GIS database is modeling the natural or man-made
phenomena of interest. This means that real-world objects need to be simplifi ed to be
represented in GIS. For vector representation of real-world objects, ArcObjects provides the
Geometry library.

9

c09.indd 257c09.indd 257 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

258 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

This chapter looks at the Geometry library. This is the library provided by ArcObjects to facilitate
constructing geometries. In addition to geometry construction, this library has numerous interfaces
for geoprocessing operations such as buffer, overlay, and union, just to name a few.

OBJECT MODEL DIAGRAM FOR THE GEOMETRY

OF FEATURES AND GRAPHICS

The Geometry library contains classes to construct and use points, polylines, polygons, and
multipatches. In addition to representing real-world objects, classes in the Geometry library can
be used to construct graphic elements. This chapter focuses on constructing and using geometry
classes for features. Chapter 10 covers displaying and using various rendering options and different
kinds of symbols available in ArcGIS, and Chapter 11 uses the materials described in this chapter
to construct and add various kinds of graphic elements. To be able to focus on geometry topics, you
will make use of quick drawing techniques in ArcGIS rather than persisting them as features.

Before exploring the Geometry library’s object model diagram, it is a good idea to know the
common terminology. The most basic constructor of all geometries is a point, which includes at
least a single pair of X and Y coordinates. Any geometry can be directly and indirectly created from
a set of point instances.

In addition to X and Y coordinates, points can have optional properties. M, Z, and ID are properties
that can be used for different purposes. For example, the M attribute can be used for linear
referencing, and the Z attribute is usually used for storing height values for points. The ID property
of points is an integer value that can be used for establishing relationships with other entities in a
database (as a foreign key).

When points (or vertices) of any geometry have the mentioned optional properties, ArcObjects
will be aware of them using attribute awareness interfaces such as IZAware, IMAware, and
IPointIDAware.

A multipoint feature is a single feature that stores the coordinates of several points in a specifi c
order. A feature class with several locations for a single supermarket chain is an example of a
multipoint feature.

A segment that consists of two points is the basis for polyline and polygon features. The Segment
Abstract Class consists of two ordered points and a function to connect those two points. Since
several functions can be defi ned to be used as the connecting curve, there are four concrete
subclasses for the Segment Abstract Class in the Geometry library. Figure 9-1 shows all available
segment types in ArcObjects.

FIGURE 9-1

EllipticArc

BezierCurve
CircularArc

Line

c09.indd 258c09.indd 258 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Object Model Diagram for the Geometry of Features and Graphics ❘ 259

Several segments can compose complex geometry classes, such as Path, Ring, Polyline, and
Polygon. A collection of several connected or disconnected paths can be used to generate a polyline,
as shown in Figure 9-2.

FIGURE 9-2

A polyline with four connected segments

A polyline with one segment

A polyline with three disconnected segments

As Figure 9-3 illustrates, a closed sequence of connected segments
constructs a ring and a collection of one or more rings generates
a polygon. (When a polygon has more than one ring it is called a
multipart polygon.)

As mentioned in previous chapters, all geometries have an
envelope (even points). The envelope of any geometry instance
defi nes the minimum bounding rectangle or extent of that geometry.
The IGeometry interface, defi ned by the Geometry Abstract Class,
has the Envelope property, which can be used to get (but not set)
the envelope of any geometry.

Figure 9-4 shows the simplifi ed object model diagram of geometry.
FIGURE 9-3

A polygon with four rings

A polygon with one ring

c09.indd 259c09.indd 259 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

260 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

FIGURE 9-4

*

*

*

GeometryObjectModel

Geometry

Point Multipoint GeometryBag

ESRISpatialReference

*

*

Curve

Segment

EllipticArc

Path

Ring

PolyCurve

Polyline

Polygon

CircularArc

BezierCurve

Line

Envelope

DISPLAYING GEOMETRIES ON THE SCREEN

In order to focus on drawing geometries, in this chapter you make use of the IScreenDisplay
interface. This interface, which represents a normal application window, can be obtained from an
IActiveView instance. It provides a temporary drawing surface.

c09.indd 260c09.indd 260 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 261

The following code demonstrates how to get a reference to an IScreenDisplay object:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IScreenDisplay screenDisp = activeView.ScreenDisplay;

After getting a reference to an object of type IScreenDisplay, you can use one of several methods
for drawing geometries. All the drawing methods must be invoked between the StartDrawing()
and FinishDrawing() methods. The following code illustrates how IScreenDisplay can be used
to draw two points:

//any call to draw methods must be between the
//StartDrawing() and FinishDrawing() methods
screenDisp.StartDrawing(screenDisp.hDC, screenCache);
screenDisp.DrawPoint(point1);
screenDisp.DrawPoint(point2);
screenDisp.FinishDrawing();

As mentioned, IScreenDisplay just provides a temporary drawing surface. In other words, the
drawn geometry will disappear when the application window is refreshed.

The StartDrawing() method expects two input parameters. The fi rst one is an integer value that
indicates the target device context where drawing will occur. This target device can be a display,
printer, or bitmaps.

The second input, which is a short value (int16 .NET data type), specifi es the cache for drawing.
ArcGIS for Desktop applications usually use different caches for drawing layers, selections,
graphics, and annotations to provide a more responsive user interface.

In most cases ScreenDisplay.hDC is provided for the fi rst input and esriNoScreenCache should
be specifi ed as the second input. Consult the ArcObjects API Reference for .NET if you need more
details about this method.

Creating and Drawing Points

A point is a zero-dimensional object that is represented by a single pair of X and Y coordinates.
Because it is a CoClass, it can be generated by using the new keyword. The coordinates of a point
can be set using the PutCoord() method or by setting X and Y properties directly. In addition, the
IConstructPoint2 interface provides various methods for generating points from other geometries
and measurements, such as distance and angles. In the next Try It Out, you create a Button add-in
to draw some points in the display window of ArcMap. You continue to use this approach in several
later Try It Outs to create other kinds of geometries.

TRY IT OUT Creating and Drawing Points (DrawingPoints.zip)

 1. Create a new ArcMap Add-in project. Name the solution GeometrySolution. In the Add-Ins
Wizard, provide the necessary information as shown in Figure 9-5 and click Finish.

c09.indd 261c09.indd 261 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

262 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 2. Add ESRI.ArcGIS.Display, ESRI.ArcGIS.Carto, and ESRI.ArcGIS.Geometry references to your
project and type the following using directives at the top of the code window of your button’s
class (DrawPoints.cs):

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.ArcMapUI;

 3. Add the following code to the button’s OnClick() method:

 IPoint p1 = new PointClass();
 p1.X = 10; p1.Y = 10;

 IPoint p2 = new PointClass();
 p2.X = 20; p2.Y = 20;

 IPoint p3 = new PointClass();
 p3.PutCoords(35, 15);

 IPoint p4 = new PointClass();
 p4.X = 40; p4.Y = 17;

 IPoint p5 = new PointClass();
 p5.X = 50; p5.Y = 19;

 IPoint p6 = new PointClass();
 p6.X = 60; p6.Y = 18;

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;

FIGURE 9-5

c09.indd 262c09.indd 262 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 263

 IActiveView activeView = mxdoc.ActiveView;

 IScreenDisplay screenDisp = activeView.ScreenDisplay;
 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);

 screenDisp.StartDrawing(screenDisp.hDC, screenCache);
 IRgbColor color = new RgbColorClass();
 color.Red = 0; color.Blue = 255; color.Green = 0;

 ISimpleMarkerSymbol simpleMarkerSymbol = new SimpleMarkerSymbolClass();
 //any call to draw methods must be between the
 //StartDrawing() and FinishDrawing() methods
 simpleMarkerSymbol.Color = color;
 screenDisp.SetSymbol(simpleMarkerSymbol as ISymbol);
 screenDisp.DrawPoint(p1);
 screenDisp.DrawPoint(p2);
 screenDisp.DrawPoint(p3);
 screenDisp.DrawPoint(p4);
 screenDisp.DrawPoint(p5);
 screenDisp.DrawPoint(p6);
 screenDisp.FinishDrawing();

 4. Next you need to add a toolbar to your add-in and put the button on the toolbar. The procedure
for adding a toolbar is slightly different in ArcGIS 10 and 10.1. Please refer to the “Adding All
FeatureClasses inside All FeatureDatasets of a File Geodatabase” Try It Out in Chapter 7 for
more details. Name the toolbar GeometryToolbar and add the reference to the button as shown in
Figure 9-6.

FIGURE 9-6

c09.indd 263c09.indd 263 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

264 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 5. Run your code by pressing F5. After a few seconds, ArcMap will appear. Click the Draw Points
button (the only button on the Geometry toolbar). If you used the specifi ed values for the
coordinates of all points, you will see Figure 9-6. If you don’t, use the Go To XY command on
ArcMap’s Tools toolbar and provide 35 and 15 as X and Y and then click the Draw Points button.

How It Works

You have to provide a symbol for IScreenDisplay to be able to draw geometries. Symbols and colors
are covered in Chapter 10. But for the purpose of drawing geometries, you use the simplest possible
types of symbol classes. In this Try It Out, you used
SimpleMarkerSymbol to draw point geometries. If you
run ArcMap, using the GeometryToolbar add-in you
can draw six points. If you don’t see the points, fi rst use
the Go To XY command (on the ArcMap Tools toolbar)
to navigate to somewhere near the coordinates of points
(such as 20,20) and then press the button to see the
points. You should see something similar to Figure 9-7.

NOTE Most subclasses of the Geometry Abstract Class implement the
IPointCollection interface. This interface can be used to get, set, update, and
query the points in a Geometry subclass object. This interface provides an
easy approach to construct most types of geometries without a need
to aggregate. In other words, there is no need to aggregate segments to a path
and paths to a polyline to create a polyline. Because Polyline implements the
IPointCollection interface, any number of points can be directly used to cre-
ate a polyline.

Creating and Drawing Multipoints

A multipoint feature is a one-dimensional object that can be used to store an ordered collection of
points. Multipoints can be constructed using methods of the IConstructMultipoint interface as
well as by directly using the IPointCollection interface. In the following Try It Out, you fi rst
create a CircularArc using three points and then divide it to produce a multipoint geometry based
on a specifi ed distance.

TRY IT OUT Creating and Drawing Multipoints (DrawingMultipoints.zip)

 1. Add a new add-in button to your solution and name it DrawingMultipoint. Provide the necessary
settings as shown in Figure 9-8. Click the Finish button.

FIGURE 9-7

c09.indd 264c09.indd 264 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 265

 2. Type the following using directives at the top of the DrawingMultipoint.cs fi le’s code window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.ArcMapUI;

 3. Add the following code to the button’s OnClick() method:

 IPoint centerPoint = new PointClass();
 centerPoint.PutCoords(0, 0);

 IPoint fromPoint = new PointClass();
 fromPoint.PutCoords(100, 0);

 IPoint toPoint = new PointClass();
 toPoint.PutCoords(0, 200);

 ICircularArc circularArcConstruction = new CircularArcClass();
 circularArcConstruction.PutCoords(centerPoint, fromPoint, toPoint,
 esriArcOrientation.esriArcClockwise);

 IMultipoint multipoint = new MultipointClass();
 IConstructMultipoint multipointConst = multipoint as
IConstructMultipoint;
 //divide the circularArc in equal-length parts
 multipointConst.ConstructDivideLength(circularArcConstruction as ICurve,
 50);

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;

FIGURE 9-8

c09.indd 265c09.indd 265 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

266 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 IScreenDisplay screenDisp = activeView.ScreenDisplay;
 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
 screenDisp.StartDrawing(screenDisp.hDC, screenCache);

 IRgbColor color = new RgbColorClass();
 color.Red = 100; color.Blue = 255; color.Green = 0;

 ISimpleMarkerSymbol simpleMarkerSymbol = new SimpleMarkerSymbolClass();
 simpleMarkerSymbol.Color = color;
 screenDisp.SetSymbol(simpleMarkerSymbol as ISymbol);
 screenDisp.DrawMultipoint(multipoint);

 screenDisp.FinishDrawing();

 4. If you look at the add-in’s XML confi guration fi le (Config.esriaddinx), you will notice that
the toolbar is defi ned as an XML element (<Toolbar>) with id, caption, and showInitially
attributes. Each item on the toolbar is a child element of the Items element (between <Items>
and </items>). The following is the fragment of the Config.esriaddinx fi le that represents the
toolbar:

 <Toolbar id="Amirian,_DevExperts_GeometrySolution_GeometryToolbar"
caption="GeometryToolbar" showInitially="false">
 <Items>
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawPoints" />
 </Items>
 </Toolbar>

Note that the refID attribute of the Item element is exactly the same as the id attribute of the
Button element, which is declared earlier in the confi guration fi le. Based on the setting of your
add-in solution, it might be different from what is presented here.

<Button id="Amirian,_DevExperts_GeometrySolution_DrawPoints" class="DrawPoints"
 message="Draws points on screendisplay" caption="Draws Points"
tip="Draws points on screendisplay" category="ArcGISBook"
image="Images\DrawPoints.png" />

If you take a look at the id attribute of the button, you will notice that its value contains the con-
tent of the Company element, the name of the solution, and the content of the Name element.

The company and the name of the solution are defi ned in the Name and Company elements in the
confi guration fi le and are set by you when you create a new add-in solution.

 <Name>GeometrySolution</Name>
 <AddInID>{2b720261-b563-4f8e-bf0e-624976b82175}</AddInID>
 <Description>Working with Geometries</Description>
 <Version>1.0</Version>
 <Image>Images\GeometrySolution.png</Image>
 <Author>Pouria Amirian</Author>
 <Company>Amirian, DevExperts</Company>

This is the expressive power of XML, which makes it both machine-readable and
human-readable.

 5. Next you add this button on the existing toolbar. Modify the Toolbar XML element to contain a
new item with the refID value of the newly added button.

c09.indd 266c09.indd 266 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 267

 <Toolbar id="Amirian,_DevExperts_GeometrySolution_GeometryToolbar"
 caption="GeometryToolbar" showInitially="false">
 <Items>
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawPoints" />
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawingMultipoint" />
 </Items>
 </Toolbar>

 6. Run the ArcMap and you should see the Geometry toolbar with two buttons. The
showInitially attribute of the Toolbar element specifi es whether the toolbar is shown the fi rst
time the add-in is installed. Use the Go To XY command to pan to somewhere around 0,0 and
press the button. Figure 9-9 shows what you see.

FIGURE 9-9

 7. If you want to add a separator between two buttons on the toolbar, all you need to do is add a
separator="true" attribute to the second Item element of the Items element. The following is
the full toolbar element and its children:

 <Toolbar id="Amirian,_DevExperts_GeometrySolution_GeometryToolbar"
caption="GeometryToolbar" showInitially="false">
 <Items>
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawPoints" />
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawingMultipoint"
 separator="true" />
 </Items>
 </Toolbar>

How It Works

In this Try It Out, you used a method of the IConstructMultipoint interface to create a multipoint
geometry. In addition, you modifi ed the XML confi guration fi le to add the newly created button to the
existing toolbar. In fact, command bars such as toolbars and menus are nothing but XML elements.

c09.indd 267c09.indd 267 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

268 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

As a result, you can easily confi gure the items contained in a menu and a toolbar. Also note that static
information about add-in buttons such as caption, ToolTip, category, and image are stored in the con-
fi guration fi le. As you progress through this book, you learn new topics about this extensible mecha-
nism of confi guration. XML has been used for more than a decade for confi guring most applications,
but it’s only recently been used to confi gure for most GIS software.

NOTE Consider the following XML fragment:

<Geometry id="43">
 <SRS name="WGS84" />
 <Shape>Polygon </Shape>
 <points>
 <point>70, 70</point>
 <point>110, 70</point>
 <point>110, 20</point>
 <point>70, 20</point>
 </points>
 </Geometry>

In XML terminology, a markup construct (called a tag) begins with < and ends
with >. There are three types of tags:

 ➤ start tag: <Shape>

 ➤ end tag: </Shape>

 ➤ empty element tag: <SRS />

An XML element begins with a start tag and ends with the corresponding end
tag. An XML element also can be composed of a single tag (an empty element
tag). The characters between the start and end tags of an element are called the
element’s content. For example, the content of the Shape element in this exam-
ple is Polygon.

A name=value pair in a start tag or in the empty element tag is called an attri-

bute. For example, the Geometry element in this example has an attribute with
the name of id and with a value of 43.

Creating and Drawing Polylines

As mentioned previously in this chapter, a polyline is an ordered collection of one or more connected
or disconnected (disjoint) paths. The easiest (and also most limited) approach to create a polyline is
to use the IPointCollection interface. The following code creates six points and adds them to an
IPointCollection instance:

 Point p1 = new PointClass();
 p1.X = 10; p1.Y = 10;

 IPoint p2 = new PointClass();

c09.indd 268c09.indd 268 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 269

 p2.X = 20; p2.Y = 20;

 IPoint p3 = new PointClass();
 p3.X = 35; p3.Y = 15;

 IPoint p4 = new PointClass();
 p4.X = 40; p4.Y = 17;

 IPoint p5 = new PointClass();
 p5.X = 50; p5.Y = 19;

 IPoint p6 = new PointClass();
 p6.X = 60; p6.Y = 18;

 IPolyline polyline = new PolylineClass();
 IPointCollection5 pointColl = polyline as IPointCollection5;
 pointColl.AddPoint(p1);
 pointColl.AddPoint(p2);
 pointColl.AddPoint(p3);
 pointColl.AddPoint(p4);
 pointColl.AddPoint(p5);
 pointColl.AddPoint(p6);

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IScreenDisplay screenDisp = activeView.ScreenDisplay;
 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
 screenDisp.StartDrawing(screenDisp.hDC, screenCache);

 IRgbColor color = new RgbColorClass();
 color.Red = 255; color.Blue = 128; color.Green = 120;

 ISimpleLineSymbol simpleLineSymbol = new SimpleLineSymbolClass();
 simpleLineSymbol.Color = color;
 simpleLineSymbol.Width = 2;

 screenDisp.SetSymbol(simpleLineSymbol as ISymbol);
 screenDisp.DrawPolyline(polyline);

 screenDisp.FinishDrawing();

You have to provide a LineSymbol instance to IScreenDisplay to enable it to draw polylines. The
order of adding points to IPointCollection defi nes the indexes of each point in the collection;
the indexes of points are important especially for retrieving and editing a geometry object.
Add another add-in button to the GeometrySolution and add the above code to the OnClick()
method of the button. Then modify the
confi guration fi le to put the button on the
toolbar. When you run the code, you will
see what is shown in Figure 9-10. You can
fi nd the code of this add-in button in the
DrawingPolylineUsingPointColl.zip fi le
in this book’s download fi les on Wrox.com. FIGURE 9-10

c09.indd 269c09.indd 269 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

270 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

In addition to IPointCollection, two other interfaces (IGeometryCollection
and ISegmentCollection) can be used to create and manipulate polylines with higher fl exibility.
The IGeometryCollection interface provides some useful methods to access, manipulate, insert,
and remove the geometry parts of a polyline. For a polyline, the geometry parts are paths. At a little
lower level, ISegmentCollection can be used to access each composing segment of a polyline.

In the next Try It Out, you create and draw a polyline using the ISegmentCollection interface.
You create three different segments and add them to an instance of ISegmentCollection and
fi nally draw them.

TRY IT OUT Creating and Drawing Polylines (DrawingPolylines.zip)

 1. Add a new add-in button to your solution and name it DrawingPolylines. Provide the necessary
settings as shown in Figure 9-11. Make sure that you provide DrawingPolylines as the class name
for the button and then click Finish.

FIGURE 9-11

 2. Type the following using directives at the top of the DrawingPolylines.cs fi le’s code
window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.ArcMapUI;

c09.indd 270c09.indd 270 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 271

 3. Add the following code to the button’s OnClick() method:

 //create a Line Segment
 Point p1 = new PointClass();
 p1.X = 10; p1.Y = 10;

 IPoint p2 = new PointClass();
 p2.X = 20; p2.Y = 20;

 ILine lineSegment = new LineClass();
 lineSegment.FromPoint = p1;
 lineSegment.ToPoint = p2;

 //create a CircularArc Segment
 IPoint p3 = new PointClass();
 p3.X = 35; p3.Y = 15;

 IPoint p4 = new PointClass();
 p4.X = 40; p4.Y = 17;

 ICircularArc circularSegment = new CircularArcClass();
 circularSegment.PutCoords(p3, p2, p4,
 esriArcOrientation.esriArcClockwise);

 //create a BezierCurve Segment
 IPoint p5 = new PointClass();
 p5.X = 50; p5.Y = 19;

 IPoint p6 = new PointClass();
 p6.X = 60; p6.Y = 18;

 IPoint p7 = new PointClass();
 p7.X = 70; p7.Y = 29;

 IPoint p8 = new PointClass();
 p8.X = 80; p8.Y = 38;

 IBezierCurve bezierSegment = new BezierCurveClass();
 IPoint[] controlPoints = { p5, p6, p7, p8 };
 IBezierCurveGEN bezierSegmenGen = bezierSegment as IBezierCurveGEN;
 bezierSegmenGen.PutCoords(ref controlPoints);

 //create a Polyline out of Segments
 ISegmentCollection path = new PathClass();
 path.AddSegment(lineSegment as ISegment);
 path.AddSegment(circularSegment as ISegment);
 path.AddSegment(bezierSegment as ISegment);

 IGeometryCollection polyline = new PolylineClass();
 polyline.AddGeometry(path as IGeometry);

 //draw the Polyline
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IScreenDisplay screenDisp = activeView.ScreenDisplay;

c09.indd 271c09.indd 271 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

272 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
 screenDisp.StartDrawing(screenDisp.hDC, screenCache);

 IRgbColor color = new RgbColorClass();
 color.Red = 255; color.Blue = 28; color.Green = 20;

 ISimpleLineSymbol simpleLineSymbol = new SimpleLineSymbolClass();
 simpleLineSymbol.Color = color;
 simpleLineSymbol.Width = 2;

 screenDisp.SetSymbol(simpleLineSymbol as ISymbol);
 screenDisp.DrawPolyline(polyline as IGeometry);

 screenDisp.FinishDrawing();

 4. Modify the confi guration fi le to put the button on the toolbar. Your Toolbar element in the
confi guration fi le should be similar to the following XML fragment:

 <Toolbar id="Amirian,_DevExperts_GeometrySolution_GeometryToolbar"
 caption="GeometryToolbar" showInitially="false">
 <Items>
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawPoints" />
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawingMultipoint"
separator="true" />
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawingPolylines"
 separator="true" />
 </Items>
 </Toolbar>

 5. Run the ArcMap and test the functionality
of the newly developed button. Use the Go
To XY command to pan to somewhere
around 20,20 and click the button. You
will see what is shown in Figure 9-12.

How It Works

Most complex geometry objects such as paths,
rings, polylines, and polygons can be created by aggregating segments. As you have seen in this Try It
Out, subclasses of the Segment Abstract Class (except the Line CoClass) provide numerous constructor
methods. Consult the online ArcGIS Resource Center to fi nd out more about them.

Creating and Drawing Polygons

As shown in Figure 9-4, a polygon is an ordered collection of rings. A ring can be inside another
ring and create what is generally called a hole. Holes defi ne the interior boundary of a polygon and
are oriented counterclockwise in ArcObjects. In contrast, rings that defi ne the exterior boundary
of a polygon are oriented clockwise. In other words, when working with rings composing the
polygon, traveling from the fi rst point to the last point of any interior ring, the polygon is always on
the left side. On the other hand, traveling from the fi rst point to the last point of the exterior ring

FIGURE 9-12

c09.indd 272c09.indd 272 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 273

of a polygon, the polygon is always on the right side. Because of this, it is an easy task to create a
polygon using the IPointCollection interface. The following code creates and draws a polygon
with two rings (an external and an internal):

 //exterior Ring
 IPoint p1 = new PointClass();
 p1.X = 70; p1.Y = 70;

 IPoint p2 = new PointClass();
 p2.X = 110; p2.Y = 70;

 IPoint p3 = new PointClass();
 p3.X = 110; p3.Y = 20;

 IPoint p4 = new PointClass();
 p4.X = 70; p4.Y = 20;

 IPointCollection exRing = new RingClass();
 exRing.AddPoint(p1);
 exRing.AddPoint(p2);
 exRing.AddPoint(p3);
 exRing.AddPoint(p4);

 //interior Ring
 IPoint p5 = new PointClass();
 p5.X = 100; p5.Y = 55;

 IPoint p6 = new PointClass();
 p6.X = 80; p6.Y = 55;

 IPoint p7 = new PointClass();
 p7.X = 80; p7.Y = 40;

 IPoint p8 = new PointClass();
 p8.X = 100; p8.Y = 40;

 IPointCollection inRing = new RingClass();
 inRing.AddPoint(p5);
 inRing.AddPoint(p6);
 inRing.AddPoint(p7);
 inRing.AddPoint(p8);

 IGeometryCollection polygon = new PolygonClass();
 polygon.AddGeometry(exRing as IGeometry);
 polygon.AddGeometry(inRing as IGeometry);

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IScreenDisplay screenDisp = activeView.ScreenDisplay;
 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
 screenDisp.StartDrawing(screenDisp.hDC, screenCache);

 IRgbColor color = new RgbColorClass();
 color.Red = 255; color.Blue = 28; color.Green = 20;

c09.indd 273c09.indd 273 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

274 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 ISimpleFillSymbol simpleFillSymbol = new SimpleFillSymbolClass();
 simpleFillSymbol.Color = color;

 screenDisp.SetSymbol(simpleFillSymbol as ISymbol);
 screenDisp.DrawPolygon(polygon as IGeometry);

 screenDisp.FinishDrawing();

The result of running this code is shown in Figure 9-13. The code
for this example is located in the DrawingPolygonInExRing.zip
fi le on the book’s download tab on Wrox.com.

Similar to polylines, polygons can be created with higher
fl exibility using interfaces such as ISegmentCollection and
IGeometryCollection. In the following example, four segments
create two rings of a polygon. The Close() method of the IRing
interface creates a line segment between the fi rst and last points of
the ring.

 Point p1 = new PointClass();
 p1.X = 10; p1.Y = 10;

 IPoint p2 = new PointClass();
 p2.X = 20; p2.Y = 20;

 ILine lineSegment1 = new LineClass();
 lineSegment1.FromPoint = p1;
 lineSegment1.ToPoint = p2;

 IPoint p3 = new PointClass();
 p3.X = 35; p3.Y = 15;

 IPoint p4 = new PointClass();
 p4.X = 40; p4.Y = 17;

 ICircularArc circularSegment = new CircularArcClass();
 circularSegment.PutCoords(p3, p2, p4,
 esriArcOrientation.esriArcClockwise);

 ISegmentCollection ringSegColl1 = new RingClass();
 ringSegColl1.AddSegment(lineSegment1 as ISegment);
 ringSegColl1.AddSegment(circularSegment as ISegment);

 IRing ring1 = ringSegColl1 as IRing;
 ring1.Close();

 IPoint p5 = new PointClass();
 p5.X = 50; p5.Y = 19;

 IPoint p6 = new PointClass();
 p6.X = 60; p6.Y = 18;

 IPoint p7 = new PointClass();

FIGURE 9-13

c09.indd 274c09.indd 274 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Displaying Geometries on the Screen ❘ 275

 p7.X = 70; p7.Y = 29;

 ILine lineSegment2 = new LineClass();
 lineSegment2.FromPoint = p5;
 lineSegment2.ToPoint = p6;

 ILine lineSegment3 = new LineClass();
 lineSegment3.FromPoint = p6;
 lineSegment3.ToPoint = p7;

 ISegmentCollection ringSegColl2 = new RingClass();
 ringSegColl2.AddSegment(lineSegment2 as ISegment);
 ringSegColl2.AddSegment(lineSegment3 as ISegment);

 IRing ring2 = ringSegColl2 as IRing;
 ring2.Close();

 IGeometryCollection polygon = new PolygonClass();
 polygon.AddGeometry(ring1 as IGeometry);
 polygon.AddGeometry(ring2 as IGeometry);

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IScreenDisplay screenDisp = activeView.ScreenDisplay;
 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
 screenDisp.StartDrawing(screenDisp.hDC, screenCache);

 IRgbColor color = new RgbColorClass();
 color.Red = 255; color.Blue = 28; color.Green = 20;

 ISimpleFillSymbol simpleFillSymbol = new SimpleFillSymbolClass();
 simpleFillSymbol.Color = color;
 screenDisp.SetSymbol(simpleFillSymbol as ISymbol);
 screenDisp.DrawPolygon(polygon as IGeometry);
 screenDisp.FinishDrawing();

Add another add-in button to GeometrySolution and insert the preceding code in the OnClick()
method of the button. Then place the button on the toolbar by modifying the confi guration fi le and
fi nally test the button. The button should create the output shown in Figure 9-14. You can fi nd the
source code of this example in the DrawingPolygonSegmentColl.zip fi le on the book’s download
tab on Wrox.com.

FIGURE 9-14

c09.indd 275c09.indd 275 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

276 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

CREATING A NEW FEATURE AND EDITING AN EXISTING

FEATURE’S GEOMETRY

Chapter 7 explains how to create and store a new row. In order to insert a new row into a table,
fi rst a new row object must be created using the CreateRow() method of the ITable interface, then
values for each Field have to be assigned using IFieldEdit. Finally, using the Store() method of
IRow, the Row object is persisted in the table.

The CreateFeature() method of the IFeatureClass interface can be used to create a new
feature. The newly created feature will have a unique ID and null value or default values for other fi elds.

IFeature newState = StatesFeatureLayer.FeatureClass.CreateFeature();

After assigning values to all necessary fi elds, calling the Store() method will persist the feature in
the geodatabase.

newState.Store();

If a FeatureClass is a versioned FeatureClass, any call to CreateFeature() should be within an
edit session. An edit session can be started and stopped with a call to the IWorkspaceEdit
.StartEditing() and IWorkspaceEdit.StopEditing() methods, respectively. In addition, if
a FeatureClass participates in topologies or geometric networks, a call to CreateFeature() must
be surrounded by an edit session.

NOTE There are two primary approaches to creating features in a geodatabase:

 ➤ Use IFeatureClass.CreateFeature() and then IFeature.Store()

 ➤ Use IFeatureClass.CreateFeatureBuffer() and then InsertCursor
.InsertFeature()

For bulk insertion of features or rows in a geodatabase, the second approach
provides higher performance for simple tables and FeatureClasses. But for
FeatureClasses and tables that implement the custom behavior (such as par-
ticipating in topologies, geometric networks, and class extensions), there is no
diff erence between these two methods. Chapter 13 provides more explanation of
these methods as well as other geospatial data management related topics.

In the following Try It Out, you create a new city in the cities FeatureClass of the USA
FeatureDataSet.

TRY IT OUT Creating a New Feature (CreatingANewFeature.zip)

 1. Add a new add-in button to your solution and name it CreatingANewCity. Provide the necessary
setting as shown in Figure 9-15. Click Finish.

c09.indd 276c09.indd 276 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a New Feature and Editing an Existing Feature’s Geometry ❘ 277

 2. Add a reference to ESRI.ArcGIS.Geodatabase and then insert the following using directives at
the top of the CreatingANewCity.cs fi le code window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.Framework;

 3. Add the following code to the button’s OnClick() method:

 //finding cities layer
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;

 ILayer layer = enumLayer.Next();
 IFeatureLayer2 cityFLayer = null;

 while (layer != null)
 {
 if (layer.Name == "U.S. Cities" && layer is IFeatureLayer2)
 {
 cityFLayer = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }

 if (cityFLayer == null)
 { return; }

 try

FIGURE 9-15

c09.indd 277c09.indd 277 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

278 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 {
 IFeature newCity = cityFLayer.FeatureClass.CreateFeature();
 IPoint citypoint = new PointClass();
 citypoint.PutCoords(-118.802581987, 34.020762811);
 newCity.Shape = citypoint;
 IFeatureClass cityFClass = cityFLayer.FeatureClass;
 int nameFieldIndex = cityFClass.Fields.FindField("CITY_NAME");
 int stateFieldIndex = cityFClass.Fields.FindField("STATE_NAME");
 int popFieldIndex = cityFClass.Fields.FindField("POP1990");
 newCity.Value[nameFieldIndex] = "Malibu";
 newCity.Value[stateFieldIndex] = "California";
 newCity.Value[popFieldIndex] = 12000;

 newCity.Store();
 }
 catch (Exception ex)
 {
 new MessageDialogClass().DoModal(ex.Source, ex.Message, "", "",
 ArcMap.Application.hWnd);

 }

 4. Next you add a menu to the add-in and put this button on the menu. Right-click your project
in the Solution Explorer window, then select New Item from the New submenu. Select Desktop
Add-in in Installed Templates and then choose the Add-in Component Container (or Add-in
Component for ArcGIS 10) item. Name the new item GeometryMenu and click Add.

 5. In the ArcGIS Add-Ins Wizard window, select Menu in the Add-in Command Bars section, set its
caption, and add a ReferenceID as shown in Figure 9-16.

FIGURE 9-16

c09.indd 278c09.indd 278 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a New Feature and Editing an Existing Feature’s Geometry ❘ 279

 6. If you take a look at the confi guration fi le you will observe have been some new elements added,
which refl ect that the existence of a menu and an item on the menu.

<Menu id="Amirian,_DevExperts_GeometrySolution_Geometry_Operation"
caption="Geometry Operation" isRootMenu="false">
 <Items>
 <Item refID="Amirian,_DevExperts_GeometrySolution_CreatingANewCity" />
 </Items>
 </Menu>

Because you want to place this menu on the toolbar, you have to modify the confi guration fi le as
you have in previous Try It Outs in this chapter. In order to add a menu to a toolbar, you need to
add an Item element inside the Items element and provide the value of the menu’s id attribute as
the value for the refID attribute of the newly added Item element.

<Toolbar id="Amirian,_DevExperts_GeometrySolution_GeometryToolbar"
caption="GeometryToolbar" showInitially="false">
 <Items>
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawPoints" />
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawingMultipoint"
 separator="true" />
 <Item
refID="Amirian,_DevExperts_GeometrySolution_DrawingPolylineUsingPointColl"
separator="true" />
 <Item refID="Amirian,_DevExperts_GeometrySolution_DrawingPolylines"
 separator="true" />
 <Item
refID="Amirian,_DevExperts_GeometrySolution_DrawingPolygonInteriorExteriorRings"
separator="true" />
 <Item
refID="Amirian,_DevExperts_GeometrySolution_DrawingPolygonSegmentCollection"
separator="true" />
 <Item
refID="Amirian,_DevExperts_GeometrySolution_Geometry_Operation"
 separator="true" />

 </Items>
 </Toolbar>

 7. Run the code and add the cities FeatureClass (from the USA feature dataset within
the TemplateData.gdb fi le that ships with ArcGIS for Desktop) to the ArcMap and test the
functionality of the button. The button should insert the city Malibu in California
(see Figure 9-17). It is a good idea to check the number of cities before and after clicking
the button.

c09.indd 279c09.indd 279 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

280 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

FIGURE 9-17

How It Works

In this Try It Out, you see how easy it is to insert a new feature into an existing FeatureClass. In fact,
the procedure for adding a new feature is similar to adding a new row except that you must set the
Shape property of a feature. You also used a menu as another type of Desktop Add-in. Both menus and
toolbars are containers for other items (such as buttons and tools). This fact is refl ected in the confi gu-
ration fi le.

Same as creating a new feature, there are a few ways to update the geometry as well as the attribute
properties of a feature.

NOTE Updating values of a row in a table is similar to this topic.

For updating the geometry and attribute properties of a feature, an update cursor can be
used. Update cursors are cursors that are initialized using the Update() method of a table or
FeatureClass. Chapter 13 explains their use updating rows or features. In addition to update
cursors, another type of cursor can be used to update properties of a feature: search cursors!

As you learned in Chapter 8, you create a search cursor using the Search() method of table or
FeatureClass instances. Then you use the Value property to get the specifi c attributes of a feature.
The Value property is a read-and-write property. As a result, you can use this property to set values
for all fi elds, including the shape for features. Then you can call the Store() method of feature to
persist the modifi cation. The following code illustrates using a search cursor to update the geometry
of Malibu (which you have added in the preceding Try It Out):

c09.indd 280c09.indd 280 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Operators ❘ 281

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;

 ILayer layer = enumLayer.Next();
 IFeatureLayer2 cityFLayer = null;

 while (layer != null)
 {
 if (layer.Name == "U.S. Cities" && layer is IFeatureLayer2)
 {
 cityFLayer = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }
 if (cityFLayer == null)
 { return; }
 IQueryFilter2 qF = new QueryFilterClass();
 qF.WhereClause = "CITY_NAME='Malibu'";

 IFeatureCursor featureCursor = cityFLayer.FeatureClass.Search(qF,
 false);
 IFeature city = featureCursor.NextFeature();
 if (city != null)
 {
 (city.Shape as IPoint).X += 1;
 (city.Shape as IPoint).Y += 2;
 city.Store();
 }
 mxdoc.ActiveView.Refresh();

WORKING WITH SPATIAL OPERATORS

There are several spatial operators for working with the geometry of features in ArcObjects. These
operators can be used to perform common geoprocessing tasks such as buffer, merge, overlay,
and union, as well as geographical measurements of features and examining the topological
relationship among the geometry of different features. This section of this chapter explores the
IRelationalOperator, IProximityOperator, and ITopologicalOperator interfaces.

Examining Spatial Relationships

In order to examine the spatial relationships between two geometries, the IRelationalOperator
interface should be used. The IRelationalOperator has several methods for examining the
relationship, which return a boolean value indicating whether or not the desired relationship
exists among two geometries. In the following Try It Out, you use the Equals() method on
IRelationalOperator to fi nd duplicate features in the U.S. States FeatureLayer. Because the test
data for the next Try It Out (the states feature class in the USA feature dataset) doesn’t have any
duplicates, it is a good idea to create some duplicate features in it. Open ArcMap and add the states
feature class to your map. Click the Editor Toolbar command on the Standard toolbar, then from the
Editor menu on the Editor toolbar click Start Editing. Use the Edit tool on the Editor toolbar

c09.indd 281c09.indd 281 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

282 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

(or any Select Features by Graphics tools on the Tools toolbar), select a feature, then copy (Ctl+C)
and paste (Ctl+V) a feature. When you paste the feature, make sure that you select the correct layer
(since you want to create duplicate features, select the U.S. States layer). Click Stop Editing on the
Editor menu and save your edits.

TRY IT OUT Finding Duplicate Features (FindingDuplicateFeatures.zip)

 1. Add a new add-in button to your solution and name it FindDuplicateStates. Provide the necessary
information and settings as shown in Figure 9-18. Click Finish.

FIGURE 9-18

 2. Insert the following using directives at the top of the FindDuplicateStates.cs fi le’s code
window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geodatabase;

 3. Add the following code to the button’s OnClick().

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer2 statesFLayer = null;

 while (layer != null)
 {

c09.indd 282c09.indd 282 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Operators ❘ 283

 if (layer.Name == "U.S. States (Generalized)"
 && layer is IFeatureLayer2)
 {
 statesFLayer = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }

 if (statesFLayer == null)
 { return; }

 string message = null;

 IPolygon polygon1 = null;
 IPolygon polygon2 = null;

 IFeatureClass statesFC = statesFLayer.FeatureClass;
 IRelationalOperator2 relOperator;
 for (int i = 1; i < statesFC.FeatureCount(null); i++)
 {
 polygon1 = statesFC.GetFeature(i).Shape as IPolygon;
 for (int j = i + 1; j <= statesFC.FeatureCount(null); j++)
 {
 polygon2 = statesFC.GetFeature(j).Shape as IPolygon;
 relOperator = polygon1 as IRelationalOperator2;
 // if polygon1 == polygon2
 if (relOperator.Equals(polygon2) == true)
 {
 message += string.Format("{0} and {1},", i, j);
 }
 }
 }

 if (message != null)
 {
 ArcMap.Application.StatusBar.Message[0] =
 "Duplicate Features: " + message;
 }
 else
 {
 ArcMap.Application.StatusBar.Message[0] =
 "There is no duplicate in U.S. States Layer";
 }

 4. Next you modify the confi guration fi le to place the newly created button on the menu. The menu
is positioned on the toolbar, so there is no need to add the button to the toolbar. Add an Item
element to the Items element inside the Menu element and use the Item element’s refID value as
the button’s ID. The following XML fragment indicates two buttons are placed on the menu:

 <Menu id="Amirian,_DevExperts_GeometrySolution_Geometry_Operation"
caption="Geometry Operation" isRootMenu="false">
 <Items>
 <Item refID="Amirian,_DevExperts_GeometrySolution_CreatingANewCity" />
<Item refID="Amirian,_DevExperts_GeometrySolution_FindDuplicateStates" />
 </Items>
 </Menu>

c09.indd 283c09.indd 283 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

284 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

Note that in the confi guration fi le the Button element is defi ned in the Commands element and the
Commands element is defi ned as the direct child of the ArcMap element.

 5. Run the solution and add the states FeatureClass to your map (from USA feature dataset inside
TemplateData.gdb). If you copy and paste some features representing states (creating some
duplications), this button can report the IDs of the duplicate features in the lower left corner of
ArcMap’s window in the status bar.

How It Works

In this example, you used the IRelationalOperator interface to fi nd duplicate features. As you might
know, fi nding duplicate data is a common task in quality control procedures.

NOTE Note that the methods of IRelationalOperator are only applicable
on points, multipoints, polylines, polygons, and envelopes. To use this interface
for other types of geometry, such as lines, CircularArcs, paths, and rings, they
fi rst must be wrapped in an appropriate geometry. For example, rings must be
wrapped into polygons, and lines must be wrapped into polylines.

Common Geoprocessing Operations

Geoprocessing operations such as buffer, overlay, and union are an indispensable part of almost any
GIS workfl ow. Methods of the ITopologicalOperator interface are in charge of performing these
common geoprocessing operations. These methods are limited to points, multipoints, polylines,
and polygons. Most methods of ITopologicalOperator return geometry and require additional
geometry as input. In the next Try It Out, you create a union of three states: California, Arizona,
and Oregon.

TRY IT OUT Creating a Union of Some Features (UnionSomeFeatures.zip)

 1. Add a n ew add-in button to your solution and name it UnionSomeFeatures. Provide necessary
settings and then click the Finish button.

 2. Insert the following using directives at the top of the code window of the UnionSomeFeatures.cs
fi le:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geodatabase;
using System.Runtime.InteropServices;

 3. You need a method for getting an individual state feature by its name. So add the following
method in the UnionSomeFeatures class fi le:

c09.indd 284c09.indd 284 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Operators ❘ 285

private IFeature GetState(string stateName)
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IMap map = activeView as IMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer2 statesFLayer = null;

 while (layer != null)
 {
 if (layer.Name == "U.S. States (Generalized)"
 && layer is IFeatureLayer2)
 {
 statesFLayer = layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }

 if (statesFLayer == null)
 { return null; }

 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = string.Format("STATE_NAME='{0}'", stateName);
 IFeatureCursor featureCursor = statesFLayer.FeatureClass.Search(qF, true);
 IFeature state = featureCursor.NextFeature();
 //releasing the cursor
 Marshal.ReleaseComObject(featureCursor);
 return state;
 }

 4. Add the following code to the OnClick() method of the button to get the three states, and union
them to create a new geometry.

IFeature california = GetState("California");
IFeature arizona = GetState("Arizona");
IFeature oregon = GetState("Oregon");

if (california == null || arizona == null || oregon == null)
{ return; }

ITopologicalOperator topoOperator =
 california.Shape as ITopologicalOperator;

IPolygon5 unionPolygon = topoOperator.Union(arizona.Shape) as IPolygon5;
IPolygon5 unionPolygon2 = (unionPolygon as ITopologicalOperator).
 Union(oregon.Shape) as IPolygon5;

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IActiveView activeView = mxdoc.ActiveView;

IScreenDisplay screenDisp = activeView.ScreenDisplay;
short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
screenDisp.StartDrawing(screenDisp.hDC, screenCache);

c09.indd 285c09.indd 285 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

286 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

IRgbColor color = new RgbColorClass();
color.Red = 214; color.Blue = 156; color.Green = 78;

ISimpleFillSymbol simpleFillSymbol = new SimpleFillSymbolClass();
simpleFillSymbol.Color = color;
screenDisp.SetSymbol(simpleFillSymbol as ISymbol);

screenDisp.DrawPolygon(unionPolygon2 as IGeometry);
screenDisp.FinishDrawing();

 5. Modify the confi guration fi le to place the button on the menu. Run your code and add the states
FeatureClass and fi nally test the button. You will see Figure 9-19.

FIGURE 9-19

How It Works

In this Try It Out, you used the ITopologicalOperator interface to perform a union of three state fea-
tures. As you can see, you can chain union polygons, but this is a very tedious and ineffi cient approach.
In order to make a union for several geometries, you can make use of the GeometryBag CoClass and
the ConstructUnion() method of the ITopologicalOperator interface. The following code demon-
strates making a union of all features in the states FeatureClass.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IMap map = activeView as IMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer2 statesFLayer = null;

 while (layer != null)
 {
 if (layer.Name == "U.S. States (Generalized)"
 && layer is IFeatureLayer2)
 {
 statesFLayer = layer as IFeatureLayer2;

c09.indd 286c09.indd 286 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Operators ❘ 287

 }
 layer = enumLayer.Next();
 }

 if (statesFLayer == null)
 { return; }

 IGeometry geometryBag = new GeometryBagClass();

 // we have to use nonrecycling cursor in order to retain
 //each individual Feature as a separate object in memory
 IFeatureCursor featureCursor = statesFLayer.FeatureClass.Search(null, false);
 IGeometryCollection geometryColl = geometryBag as IGeometryCollection;
 IFeature aFeature = featureCursor.NextFeature();

 while (aFeature != null)
 {
 geometryColl.AddGeometry(aFeature.Shape);
 aFeature = featureCursor.NextFeature();
 }
 Marshal.ReleaseComObject(featureCursor);
 ITopologicalOperator topoOperator = new PolygonClass();
 topoOperator.ConstructUnion(geometryColl as IEnumGeometry);

 IScreenDisplay screenDisp = activeView.ScreenDisplay;
 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
 screenDisp.StartDrawing(screenDisp.hDC, screenCache);

 IRgbColor color = new RgbColorClass();
 color.Red = 214; color.Blue = 156; color.Green = 78;

 ISimpleFillSymbol simpleFillSymbol = new SimpleFillSymbolClass();
 simpleFillSymbol.Color = color;

 screenDisp.SetSymbol(simpleFillSymbol as ISymbol);
 screenDisp.DrawPolygon(topoOperator as IGeometry);
 screenDisp.FinishDrawing();

As mentioned in the comments of the preceding code, you have to use a nonrecycling cursor to keep
the reference to the individual feature in memory while iterating through features. This behavior is
necessary, otherwise you’ll lose the reference to the retrieved feature (the shape of the feature in this
example) with each iteration. In other words, the result of preceding code, with recycling disabled, will
be the last feature of the states feature class — that is, it unions with itself several times (up to the
number of features in the states feature class).

Determining the Nearest Points and Distance

In order to fi nd the distance between two geometries or locate the nearest point geometry in
relation to other geometries, IProximityOperator can be used. Unlike IRelationalOperator
and ITopologicalOperator, IProximityOperator is implemented by almost all geometry types.
In the following Try It Out, you create a dockable window add-in to calculate distances between a
specifi c city and all cities inside a specifi ed state.

c09.indd 287c09.indd 287 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

288 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

TRY IT OUT Nearest Cities (FindingNearestCities.zip)

 1. Add a new add-in component to your solution and name it NearestDockableWindow. Select
Dockable Window as the type of add-in component, provide the necessary settings as shown in
Figure 9-20, and then click the Finish button.

FIGURE 9-20

 2. Add a class fi le to your solution and name it NearCity. Add Name and Distance properties to the
class and a constructor that solicits Name as the input parameter. Instances of this NearCity class
need to be sorted based on the Distance property. A standard way to do this is to implement the
IComparable interface. The following code is the full code of the NearCity class.

public class NearCity : IComparable<NearCity>
 {
 public string Name
 { get; set; }

 public double Distance
 { get; set; }

 public NearCity(string Name)
 {
 this.Name = Name;
 }

 public int CompareTo(NearCity other)
 {
 if (this.Distance > other.Distance)

c09.indd 288c09.indd 288 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Operators ❘ 289

 {
 return 1;
 }
 else if (this.Distance < other.Distance)
 {
 return -1;
 }
 else
 {
 return 0;
 }
 }
 }

 3. In the Solution Explorer window, double-click on the
NearestDockable window to bring up the designer. Put two
buttons, two list boxes, two labels, and a DataGridView on the
dockable window and arrange them as shown in Figure 9-21.

 4. Type the following using directives at the top of the
NearestDockableWindow.cs fi le’s code window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geodatabase;
using System.Runtime.InteropServices;

 5. Double-click on btnPopulateListOfCitiesStates (the button
at the top of the dockable window) to create stub code for
handling the Click event. Insert the following code inside the event handler:

 lstCities.Items.Clear();
 lstStates.Items.Clear();
 lstCities.Sorted = true;
 lstStates.Sorted = true;

 IFeatureLayer2 statesFLayer = GetFeatureLayer("U.S. States (Generalized)");
 IFeatureLayer2 citiesFLayer = GetFeatureLayer("U.S. Cities");

 if (statesFLayer == null || citiesFLayer == null)
 { return; }

 IFeatureCursor stateFeatureCursor = statesFLayer.Search(null, true);
 IFeature state = stateFeatureCursor.NextFeature();
 IFeatureClass stateFC = statesFLayer.FeatureClass;
 int statenameFieldIndex = stateFC.Fields.FindField("STATE_NAME");
 while (state != null)
 {
 lstStates.Items.Add(state.Value[statenameFieldIndex]);
 state = stateFeatureCursor.NextFeature();
 }

FIGURE 9-21

c09.indd 289c09.indd 289 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

290 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 Marshal.ReleaseComObject(stateFeatureCursor);

 IFeatureCursor cityFeatureCursor = citiesFLayer.Search(null, true);
 IFeature city = cityFeatureCursor.NextFeature();
 IFeatureClass cityFC = citiesFLayer.FeatureClass;
 int citynameFieldIndex = cityFC.Fields.FindField("CITY_NAME");
 while (city != null)
 {
 lstCities.Items.Add(city.Value[citynameFieldIndex]);
 city = cityFeatureCursor.NextFeature();
 }
 Marshal.ReleaseComObject(cityFeatureCursor);

 6. Add a method to return a FeatureLayer based on the name of the layer.

public IFeatureLayer2 GetFeatureLayer(string layerName)
 {

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 while (layer != null)
 {
 if (layer.Name == layerName && layer is IFeatureLayer2)
 {
 return layer as IFeatureLayer2;
 }
 layer = enumLayer.Next();
 }
 return null;
 }

 7. Go to the Designer window and double-click on btnCalculateDistance (the button with Calculate
Distance text), then insert the following code inside the click event handler:

 List<NearCity> nearCities = new List<NearCity>();

 if (lstCities.SelectedIndex < 0 || lstStates.SelectedIndex < 0)
 { return; }

 string specifiedState = lstStates.SelectedItem.ToString();
 string specifiedCity = lstCities.SelectedItem.ToString();

 //select cities inside the specified state
 //select specified city and use its geometry as
 //ProximityOperator to calculate all distances

 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = string.Format("CITY_NAME='{0}'", specifiedCity);
 IFeatureClass citiesFC = GetFeatureLayer("U.S. Cities").FeatureClass;
 IFeatureSelection citiesFSelection = GetFeatureLayer("U.S. Cities")
 as IFeatureSelection;

 IFeatureCursor featureCursor = citiesFC.Search(qF, true);

c09.indd 290c09.indd 290 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Spatial Operators ❘ 291

 IFeature city = featureCursor.NextFeature();
 citiesFSelection.SelectFeatures(qF,
 esriSelectionResultEnum.esriSelectionResultNew, true);

 IProximityOperator proximityOp = city.Shape as IProximityOperator;

 qF.WhereClause = string.Format("STATE_NAME='{0}'", specifiedState);
 citiesFSelection.SelectFeatures(qF,
 esriSelectionResultEnum.esriSelectionResultAdd, false);

 featureCursor = citiesFC.Search(qF, true);
 IFeature candidateCity = featureCursor.NextFeature();

 int citynameFieldIndex = citiesFC.Fields.FindField("CITY_NAME");

 while (candidateCity != null)
 {
 NearCity aNearCity = new NearCity(
 candidateCity.Value[citynameFieldIndex].ToString());
 aNearCity.Distance = proximityOp.ReturnDistance(
 candidateCity.Shape as IGeometry4);
 nearCities.Add(aNearCity);
 candidateCity = featureCursor.NextFeature();
 }

 nearCities.Sort();
 dgv.DataSource = nearCities;
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 mxdoc.ActiveView.Extent = city.Shape.Envelope;
 mxdoc.ActiveView.Refresh();

 8. Same as all add-in dockable window components, you need an additional button to display
or activate it in ArcMap. So add a new add-in component button to your solution and name it
NearestToggle. Add the following using directives in the code fi le of the newly added button:

using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Framework;

 9. Add the following code to the button’s OnClick() method to display or activate the dockable
window:

 UID dockableWinUID = new UIDClass();
 dockableWinUID.Value = ThisAddIn.IDs.NearestDockableWindow;
 IDockableWindow nearestDockableWin = ArcMap.DockableWindowManager.
 GetDockableWindow(dockableWinUID);
 nearestDockableWin.Show(true);

 10. As the fi nal step, modify the confi guration fi le to place the NearestToggle button on the menu.
Then run the add-in and add cities and states FeatureClasses to the ArcMap and test the
functionality of the dockable window.

c09.indd 291c09.indd 291 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

292 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

How It Works

In this Try It Out, you used one of the standard and generic interfaces of .NET to provide sort func-
tionality. In order to implement this interface, all that is required is the defi nition of a single method
called CompareTo(). This method indicates whether the position of the current instance in the sort
order is before, after, or the same as a second object of the same type. When you call the Sort()
method on the generic List<NearCity>, the CompareTo() method will sort the list.

You also saw how to use the IProximityOperator interface to calculate the distance between two
geometries. Note that the ReturnDistance() method reports minimum distances in the dataset’s
units. As a result, in order to obtain distances in different units you have to multiply it by a constant or
apply a different projection to the geometries.

LENGTH, AREA, CENTROID, AND ENVELOPE OF GEOMETRIES

In order to obtain the length of any one-dimensional geometry (such as paths and polylines) or the
perimeter of any two-dimensional geometry (such as rings and polygons), the Length property of
ICurve (or the most recent version, ICurve3) interface can be used. The ICurve interface is defi ned
on the Curve Abstract Class and as a result is inherited by all subclasses.

The area and centroid of a two-dimensional geometry can be easily obtained using the IArea
interface. The centroid of a geometry object is a point indicating the center of gravity of that
geometry, which can be inside or outside of the geometry. Same as other things related to geometry,
the area, length, and position of the centroid are in the units of the dataset.

The Envelope property is defi ned in the IGeometry interface, which is the primary interface of the
ultimate parent class of all geometry classes (the Geometry Abstract Class). This property can be
used to get the extent of a geometry. Note that Envelope is also a CoClass, meaning that there is
no need to get a reference to an envelope from an existing geometry. For example, you can defi ne a
specifi c extent as a live instance of the Envelope CoClass for creating a spatial bookmark within a
map document (.mxd) fi le.

The following code demonstrates the use of these interfaces to obtain common geometrical properties:

 ICurve3 polygonICurve = polygon as ICurve3;
 IArea polygonIArea = polygon as IArea;

 double perimeter = polygonICurve.Length;
 double area = polygonIArea.Area;
 IPoint centroid = polygonIArea.Centroid;
 //zooming to the polygon's envelope
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 activeView.Extent = polygon.Envelope;
 //instantiating a new envelope
 IEnvelope envelope = new EnvelopeClass();
 envelope.XMin = -170; envelope.XMax = -66;
 envelope.YMin = 20; envelope.YMax = 74;
 activeView.Extent = envelope;

c09.indd 292c09.indd 292 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 293

SUMMARY

The geometry of geospatial data is one of the distinguishing aspects of GIS from any other
information system. In this chapter, you learned the basics of creating geometries. Working with
the geometry of features and performing common geoprocessing operations was also covered in this
chapter. In addition, you explored another type of desktop add-in. There wasn’t anything related to
spatial reference systems in this chapter. Those are covered in Chapter 13.

EXERCISES

 1. Which attribute in a confi guration fi le indicates if an add-in toolbar is automatically displayed the

fi rst time after the installation of the add-in?

 2. Which interface provides the functionality to examine the spatial relationship between two

geometries?

 3. Why should a non-recycling cursor be used to create a union of all the features in a

FeatureClass?

You will fi nd the answers to these exercises in this book’s appendix.

c09.indd 293c09.indd 293 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

294 ❘ CHAPTER 9 CONSTRUCTING AND USING THE GEOMETRY OF FEATURES

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Displaying

geometries on the

screen

The IScreenDisplay interface provides a temporary drawing surface

that can be easily used to draw geometries. This interface, which

represents a normal application window, can be obtained from an

IActiveView instance.

Adding items (such

as buttons) to an

existing toolbar

In order to add any add-in component to a toolbar (such as buttons and

menus), you have to insert a new Item element as a child of the toolbar’s

Items element in the confi guration fi le (config.esriaddinx). Then the

value of the refID attribute of the Item element (as a child of the Items

element) must be set to the id attribute of the add-in component.

Defi ning interior and

exterior rings of a

polygon

The interior rings, which defi ne the interior boundary of a polygon, are

oriented counterclockwise in ArcObjects. In contrast, rings that defi ne

the exterior boundary of polygons are oriented clockwise. In other words,

when working with rings composing the polygon, traveling from the fi rst

point to the last point of any interior ring, the polygon is always on the

left side. On the other hand, traveling from the fi rst point to the last point

of the exterior ring of a polygon, the polygon is always on the right side.

Using this characteristic, it is an easy task to create a polygon using the

IPointCollection interface. All that has to be done is to defi ne two

rings and then add points to those rings according to their orientations.

Creating a new

feature

In order to create a new feature, the CreateFeature() method of the

IFeatureClass interface can be used. The newly created feature will

have a unique ID and null value or default values for other fi elds. Also it is

possible to use an insert cursor to create a new feature. As an important

tip, insert cursors provide higher performance for creating a large amount

of features.

Updating a feature’s

geometry

To update the geometry as well as the attribute properties of a feature, an

update cursor can be used. In addition to update cursors, search cursors

can be used to update feature properties (geometry as well as attributes).

Search cursors are created using the Search() method of a table or

FeatureClass. Then the Value property has to be used to get the specifi c

attribute of a feature. The Value property is a read-and-write property. As

a result, this property can be used to set values (including the shape) for

features for all fi elds.

Then in order to persist the modifi cations, the Store() method of a

feature must be called.

c09.indd 294c09.indd 294 25/02/13 12:15 PM25/02/13 12:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Rendering Geospatial Data and
Using Hyperlinks and MapTips

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Exploring object model diagrams for rendering, including colors,

ColorRamps, and symbols

 ➤ Making use of various renderers for vector and raster data

 ➤ Using diff erent classifi cation methods

 ➤ Refreshing the ActiveView

 ➤ Examining simple and advanced MapTips

 ➤ Creating hyperlinks and dynamic hyperlinks

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter10 folder and
is individually named according to the names throughout the chapter.

Users of ArcGIS for Desktop applications set the symbology of layers using the Symbology
and Display tabs of the Layer Properties window. There are several rendering options for each
layer, such as Single Symbol, Unique Values, and Graduated Colors. Setting a symbology for
a specifi c layer will change the appearance of its contents (for example, features in the case of
FeatureLayer) as well as the legend of the layer in the application’s Table Of Contents window.

Developers of ArcGIS for Desktop applications access the same functionality (and more)
through a multitude of types inside several libraries in ArcObjects such as Display, Carto, and
System. This chapter presents an overview of setting symbology for vector and raster layers
and explores some widely needed types when working with Renderer classes. This chapter

10

c10.indd 295c10.indd 295 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

296 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

fi rst discusses how to change the appearance of geospatial data and then deals with how to make
features to go beyond display through hyperlinks and MapTips.

GEOSPATIAL DATA DISPLAY

The geospatial data display has a key role for data exploration and evaluation. Proper display of
geospatial data leads to much easier understanding of real-world phenomena that are represented
by geospatial data. Proper display of geospatial data even can result in stimulation of the visual
reasoning of users and ultimately support the decision-making process. So it consists of cartography
as well as art, digital technology, psychology, human-computer interaction, and many other
disciplines. However, ArcObjects developers need only to focus on working with the proper types
inside ArcObjects rather than the other tasks involved with proper data display. The following
sections provide information about working with the necessary types for setting and defi ning
symbology for geospatial data.

Color and ColorRamp Classes

An indispensable part of symbology is color. The Display library of ArcObjects includes a Color
Abstract Class that has fi ve creatable subclasses. Figure 10-1 shows how these fi ve CoClasses can be
used to defi ne colors using different methods.

FIGURE 10-1

RgbColor

DisplayObjectModel

HsvColor HlsColor

*

GrayColorCmykColor

ColorRamp

PresetColorRamp

Color

RandomColorRamp

AlgorithmicColorRamp MultiPartColorRamp

c10.indd 296c10.indd 296 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 297

Each of the fi ve CoClasses has a distinct interface to defi ne the parameters needed to specify a
color. For example, the HsvColor CoClass has an IHsvColor interface with three properties: Hue,
Saturation, and Value. Table 10-1 provides all the needed properties of a color for a different
interface.

TABLE 10-1: Various Color CoClasses

COLOR INTERFACE PROPERTIES RANGE (LONG)

IRgbColor Red

Green

Blue

0-255

0-255

0-255

IHsvColor Hue

Saturation

Value

0-360

0-100

0-100

IHlsColor Hue

Lightness

Saturation

0-100

0-100

0-100

ICmykColor Cyan

Magenta

Yellow

Black

0-255

0-255

0-255

0-255

IGrayColor Level 0-255

A color ramp is simply a collection of unique
or sequential colors. ArcGIS for Desktop
applications offer a set of predefi ned color
ramps in the Symbology tab of the Layer
Properties window. The same color ramp
objects can be accessed using the Style
Manager window, as shown in Figure 10-2.

Developers can create a ColorRamp instance
using four concrete subclasses of the
ColorRamp Abstract Class. The ColorRamp
Abstract Class defi nes an interface called
IColorRamp, which has Size, Color,
Colors, and Name properties. All the
interfaces of all subclasses of ColorRamp
inherit from this interface. In other FIGURE 10-2

c10.indd 297c10.indd 297 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

298 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

words, Size, Color, Colors, and Name properties are available to all the instances of ColorRamp
subclasses.

In order to work with an instance of a ColorRamp subclass, after instantiation, the Size property
(which indicates the number of colors to be created by the instance of ColorRamp) must be set. Then
the CreateRamp() method has to be called to create a series of Color objects. The created Color
objects can be accessed using the Colors property of the ColorRamp instance which is of type
IEnumColors. Like any Enum, IEnumColors has a Next() method that points to the next item. The
following code snippet creates a RandomColorRamp instance and gets the fi rst Color object created
by the RandomColorRamp:

 IRandomColorRamp randomColorRamp = new RandomColorRampClass();
 randomColorRamp.Size = 25;
 bool ok = true;
 randomColorRamp.CreateRamp(out ok);
 IEnumColors enumColors = randomColorRamp.Colors;
 IColor color = enumColors.Next();

The most commonly used ColorRamp subclass is the AlgorithmicColorRamp CoClass. An
instance of this class must be defi ned using two Color objects and an algorithm to be used to
fi ll the color space between those two colors. There are three possible algorithms for creating an
AlgorithmicColorRamp instance.

Discussion about these algorithms is out of the scope of this book. The following code creates a
color ramp, based on AlgorithmicColorRamp.

 IAlgorithmicColorRamp algColorRamp = new AlgorithmicColorRampClass();
 IRgbColor startColor = new RgbColorClass();
 startColor.Red = 255; startColor.Green = 20; startColor.Blue = 232;

 IRgbColor toColor = new RgbColorClass();
 toColor.Red = 242; toColor.Green = 239; toColor.Blue = 136;

 algColorRamp.FromColor = startColor;
 algColorRamp.ToColor = toColor;
 algColorRamp.Size = 25;
 algColorRamp.Algorithm = esriColorRampAlgorithm.esriLabLChAlgorithm;
 bool ok = true;
 algColorRamp.CreateRamp(out ok);

Symbols

In order to display anything in ArcGIS for Desktop applications, some kind of Symbol object must
be used. Lots of things (such as features, charts, pictures, texts, and north arrows) can be displayed
in ArcGIS for Desktop applications, so a large number of classes defi ne different kinds of symbol
objects. Figure 10-3 presents a simple and brief view of the Symbol hierarchy.

c10.indd 298c10.indd 298 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 299

FIGURE 10-3

CartographicLineSymbol

ISymbol

DisplayObjectModel Symbol

MarkerSymbol LineSymbol FillSymbol

PictureMarkerSymbol

SimpleMarkerSymbol

CartographicMarkerSymbol

CharacterMarkerSymbol

SimpleFilSymboll

MarkerFillSymbol

LineFillSymbol

GradientFillSymbol

PictureFillSymbolMarkerLineSymbol

HashLineSymbol

PictureLineSymbol

SimpleLineSymbol

You used SimpleMarkerSymbol, SimpleLineSymbol, and SimpleFillSymbol in Chapter 9. Each
Symbol subclass has members such as Color, Style, and Size through which an ArcObjects
developer can tweak the appearance of the symbol. For example, the following code draws some
points on the screen using an instance of PictureMarkerSymbol. Note that this code assumes that
the specifi ed address includes an image fi le.

c10.indd 299c10.indd 299 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

300 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

 IPoint p1 = new PointClass();
 p1.X = 10; p1.Y = 10;
 IPoint p2 = new PointClass();
 p2.X = 20; p2.Y = 20;
 IPoint p3 = new PointClass();
 p3.PutCoords(35, 15);
 IPoint p4 = new PointClass();
 p4.X = 40; p4.Y = 17;
 IPoint p5 = new PointClass();
 p5.X = 50; p5.Y = 19;
 IPoint p6 = new PointClass();
 p6.X = 60; p6.Y = 18;
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IScreenDisplay screenDisp = activeView.ScreenDisplay;
 short screenCache = Convert.ToInt16(esriScreenCache.esriNoScreenCache);
 screenDisp.StartDrawing(screenDisp.hDC, screenCache);
 string picAddress = @"D:\GIS.bmp";
 IPictureMarkerSymbol picMarkerSymbol = new PictureMarkerSymbolClass();
 picMarkerSymbol.CreateMarkerSymbolFromFile
 (esriIPictureType.esriIPictureBitmap, picAddress);
 picMarkerSymbol.Size = 30;
 screenDisp.SetSymbol(picMarkerSymbol as ISymbol);
 screenDisp.DrawPoint(p1);
 screenDisp.DrawPoint(p2);
 screenDisp.DrawPoint(p3);
 screenDisp.DrawPoint(p4);
 screenDisp.DrawPoint(p5);
 screenDisp.DrawPoint(p6);
 screenDisp.FinishDrawing();

Figure 10-4 shows what you see when you run this code.

Renderers for Vector and

Raster Geospatial Data

Each Layer object needs an appropriate
type of renderer in order to be displayed by
ArcGIS for Desktop applications.

For vector data, the IGeoFeatureLayer
interface of the FeatureLayer CoClass has a Renderer property through which any
renderer can be associated. As shown in Figure 10-5, there are several creatable subclasses
of the FeatureRenderer Abstract Class. In this book, you explore SimpleRenderer,
UniqueValueRenderer, ClassBreaksRenderer, and ScaleDependentRenderer for vector
geospatial data.

FIGURE 10-4

c10.indd 300c10.indd 300 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 301

FIGURE 10-5

IGeoFeatureLayer
CatroObjectModel

FeatureRenderer

FeatureLayer

ChartRenderer

RepresentationRenderer

ProportionalSymbolRender

ScaleDependentRenderer

SimpleRenderer

ClassBreaksRenderer UniqueValueRenderer

BiUniqueValueRenderer

DotDensityRenderer

Raster data also has several Renderer CoClasses (see Figure 10-6). The Renderer object of
a RasterLayer can be set or obtained through the Renderer property of the IRasterLayer
interface. This book covers only the RasterRGBRenderer CoClass.

c10.indd 301c10.indd 301 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

302 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

FIGURE 10-6

IRasterLayer
CartoObjectModel

RasterRenderer

RasterLayer

RasterDiscreteColorRenderer

RasterClassifyColorRampRendererRasterColormapRenderer

RasterRGBRenderer RasterUniqueValueRenderer

RasterStretchColorRampRenderer

NOTE The default renderer for vector data is SimpleRenderer. In other words,
when adding vector data (such as FeatureClasses or shapefi les) to ArcGIS for
Desktop applications, all the features are displayed using a single symbol. In
contrast to vector data, there is no default renderer for raster data. Based on the
type of data in the Raster dataset, ArcObjects automatically uses the appropri-
ate RasterRenderer to display it. For example, if a multispectral or hyperspec-
tral satellite image is added to ArcMap, it uses RasterRGBRenderer to display
a satellite image as an RGB composite and if a digital elevation model (DEM) is
added to ArcMap, it uses RasterStretchColorRampRenderer to display DEM.
Also some rasters have a predefi ned color map that ArcGIS for Desktop applica-
tions automatically use to display them.

SimpleRenderer for Vector Data

This renderer is the default renderer that ArcGIS for Desktop applications use to display vector
data. SimpleRenderer displays all features of a FeatureLayer using a single symbol. So in order to
associate a SimpleRenderer with a FeatureLayer, all that is needed is to create an appropriate type
of symbol and then assign it as the symbol used by SimpleRenderer. You see this in action in the
next Try It Out.

c10.indd 302c10.indd 302 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 303

TRY IT OUT Rendering Vector Data Using SimpleRenderer (SimpleRenderer.zip)

 1. Create a new ArcMap Add-in project. Name the solution GeospatialDataRenderer. In the ArcGIS
Add-Ins Wizard, provide the necessary information in the Welcome page and then click the Next
button. Select Button as the type of add-in and provide the information shown in Figure 10-7, and
then click Finish.

FIGURE 10-7

 2. Add ESRI.ArcGIS.Display, ESRI.ArcGIS.Geometry, and ESRI.ArcGIS.Carto references to
your project and type the following using directives at the top of the code window in the
usingSimpleRenderer.cs fi le:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.ArcMapUI;

 3. Add the following code to the button’s OnClick() method:

 IRgbColor fillColor = new RgbColorClass();
 fillColor.Red = 243; fillColor.Green = 188; fillColor.Blue = 245;

 IRgbColor outlineColor = new RgbColorClass();
 outlineColor.Red = 14; outlineColor.Green = 99; outlineColor.Blue = 24;

 ISimpleLineSymbol outlineSymbol = new SimpleLineSymbolClass();
 outlineSymbol.Color = outlineColor;
 outlineSymbol.Width = 1.5;

 ISimpleFillSymbol simpleFillSymbol = new SimpleFillSymbolClass();

c10.indd 303c10.indd 303 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

304 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

 simpleFillSymbol.Style = esriSimpleFillStyle.esriSFSSolid;
 simpleFillSymbol.Color = fillColor;
 simpleFillSymbol.Outline = outlineSymbol;

 ISimpleRenderer simpleRenderer = new SimpleRendererClass();
 simpleRenderer.Label = "USA States in the same Color";
 simpleRenderer.Symbol = simpleFillSymbol as ISymbol;

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;

 IEnumLayer layers = map.Layers;
 ILayer layer = layers.Next();
 IFeatureLayer2 statesFL = null;
 while (layer != null)
 {
 if (layer is IFeatureLayer2 && layer.Name == "U.S. States
 (Generalized)")
 {
 statesFL = layer as IFeatureLayer2;
 }
 layer = layers.Next();
 }
 if (statesFL == null)
 { return; }

 IGeoFeatureLayer geoFL = statesFL as IGeoFeatureLayer;
 geoFL.Renderer = simpleRenderer as IFeatureRenderer;
 mxdoc.ActiveView.Refresh();
 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGeography,
geoFL, mxdoc.ActiveView.Extent);
 mxdoc.UpdateContents();

 4. Add a new command container (toolbar) to your project. Procedures for adding a command
container for versions 10 and 10.1 of ArcGIS are slightly different.

 ➤ For ArcGIS 10.1 right-click on your project in the Solution Explorer window and select
New Item from the Add submenu. Then select the Desktop Add-Ins item under the ArcGIS
template. Then select Add-in Command Container item, and name it RendererToolbar.cs.
Select Toolbar as the type of Command Bar and add the ReferenceID of the using
SimpleRenderer button in your project by clicking inside the Items grid, and fi nally click the
Finish button (see Figure 10-8).

 ➤ For ArcGIS 10, right-click on your project in the Solution Explorer window and select
New Item from the Add submenu. Then select the Desktop Add-Ins item under the ArcGIS
template. Then select Add-in Component and name it RendererToolbar.cs. Without
specifying anything in the fi rst page of the ArcGIS Add-Ins Wizard, go to the second page
by clicking on Add-in Command Bars. Select Toolbar, confi gure its settings as shown in
Figure 10-8, and click the Finish button.

c10.indd 304c10.indd 304 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 305

 5. Run the code and add the states FeatureClass from the USA FeatureDataset, click on the newly
created button, and you should see Figure 10-9.

FIGURE 10-8

FIGURE 10-9

c10.indd 305c10.indd 305 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

306 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

How It Works

In this Try It Out, you defi ned outline and fi ll symbols for a SimpleRenderer and used the
IGeoFeatureLayer interface to associate the created SimpleRenderer with the FeatureLayer. In
addition, in order to refresh the ActiveView, instead of calling the Refresh() method, you called the
PartialRefresh() method. As its name implies, the PartialRefresh() method partially refreshes
the display and as a result improves drawing performance. You learn more about this method later in
this chapter. One of the inputs of the PartialRefresh() method is of type IEnvelope, defi ned in the
Geometry assembly, which is why you added a reference to the ESRI.ArcGIS.Geometry assembly.

UniqueValueRenderer for Vector Data

As the name suggests, this renderer can assign a distinct symbol to each unique value (category)
in attribute tables of vector data. The unique values can be of any type, such as text and number.
In other words, a UniqueValueRenderer uses one or more fi elds in the attribute table of a
FeatureClass in order to render each unique value (category) with a distinct symbol. Up to three
fi elds can be specifi ed for a UniqueValueRenderer, but usually just one fi eld is used to create the
categories. In the following Try It Out, you create an example of a UniqueValueRenderer.

TRY IT OUT Rendering Vector Data Using UniqueValueRenderer
(UniqueValueRenderer.zip)

 1. Add a new add-in component to your project and name it usingUniqueValueRenderer. Select
Button as the type of add-in, provide the information displayed in Figure 10-10, and click Finish.

FIGURE 10-10

c10.indd 306c10.indd 306 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 307

 2. You need to get all the unique values from a fi eld in the attribute table of the counties
FeatureClass. So add a reference to ESRI.ArcGIS.Geodatabase and then enter the following
using directives at the top of the code window:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.Geometry;
using System.Runtime.InteropServices;

 3. In order to use different colors for unique categories of attribute values, you need to create a color
ramp. Insert the following method in your code in the usingUniqueValueRenderer.cs fi le:

 private IEnumColors GetColorRamp(int size)
 {
 IRandomColorRamp randomColorRamp = new RandomColorRampClass();
 randomColorRamp.Size = size;
 bool ok = true;
 randomColorRamp.CreateRamp(out ok);
 return randomColorRamp.Colors;
 }

 4. Add the following code to the button’s OnClick() method:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer layers = map.Layers;
 ILayer layer = layers.Next();
 IFeatureLayer2 countiesFL = null;

 while (layer != null)
 {
 if (layer is IFeatureLayer2 && layer.Name == "U.S. Counties
 (Generalized)")
 {
 countiesFL = layer as IFeatureLayer2;
 }
 layer = layers.Next();
 }
 if (countiesFL == null)
 { return; }

 IFeatureLayer2 FL = map.Layer[map.LayerCount - 1] as IFeatureLayer2;
 IFeatureCursor fCursor = FL.FeatureClass.Search(null, true);

 List<string> uniqueValues = new List<string>();
 IFeature feature = fCursor.NextFeature();
 int fieldIndex = FL.FeatureClass.Fields.FindField("STATE_NAME");

 while (feature != null)
 {
 if (uniqueValues.Contains(feature.Value[fieldIndex].ToString())
 == false)
 {
 uniqueValues.Add(feature.Value[fieldIndex].ToString());

c10.indd 307c10.indd 307 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

308 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

 }
 feature = fCursor.NextFeature();
 }
 Marshal.ReleaseComObject(fCursor);
 IUniqueValueRenderer uVRenderer = new UniqueValueRendererClass();
 uVRenderer.FieldCount = 1;
 uVRenderer.Field[0] = "STATE_NAME";

 IEnumColors enumColors = GetColorRamp(uniqueValues.Count);
 for (int i = 0; i < uniqueValues.Count; i++)
 {
 ISimpleFillSymbol simpleFSymbol = new SimpleFillSymbolClass();
 simpleFSymbol.Color = enumColors.Next();
 uVRenderer.AddValue(uniqueValues[i], "States",
 simpleFSymbol as ISymbol);
 }

 IGeoFeatureLayer geoFL = FL as IGeoFeatureLayer;
 geoFL.Renderer = uVRenderer as IFeatureRenderer;
 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGeography,
geoFL, mxdoc.ActiveView.Extent);
 mxdoc.UpdateContents();

 5. Modify the confi guration fi le to place the button on the toolbar.

 <Toolbar id="Amirian,_devExperts_GeospatialDataRenderer_Renderer_Toolbar"
caption="Renderer Toolbar" showInitially="true">
 <Items>
 <Item refID="Amirian,_devExperts
_GeospatialDataRenderer_usingSimpleRenderer" />
 <Item refID="Amirian,_devExperts
_GeospatialDataRenderer_usingUniqueValueRenderer" />
 </Items>
 </Toolbar>

 6. Run your code and add the counties FeatureClass of USA FeatureDataset then click the newly
added button to the toolbar. Figure 10-11 shows what you should see.

FIGURE 10-11

c10.indd 308c10.indd 308 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 309

How It Works

In this example, you used a RandomColorRamp to create distinct Color objects for unique values. Since
the RandomColorRamp creates random Color objects, each time you click the button, you get a different
series of colors, and as a result, a different view of the same FeatureClass.

ClassBreaksRenderer for Vector Data

Up to this point in this chapter, you have used two types of FeatureRenderers to create single
or multiple symbols for all features in a FeatureClass without any classifi cation. In order to
display various classes of features of a FeatureClass using classifi cation of a numeric fi eld, an
IClassBreaksRenderer interface can be utilized.

In order to set the symbology of a FeatureLayer using an ArcGIS for Desktop application’s user
interface, you fi rst set a numeric fi eld and number of classes, and then tweak the method of classifi cation.
In other words, you can choose different classifi cation methods, the number of classes, break values, and
color ramps for the symbology of a FeatureLayer. In addition, in the Classifi cation window you can see
the histogram for data values, which consists of unique data values and their frequencies.

As an ArcObjects developer, you use the same procedure in reverse. First you need to get
the histogram of a specifi c fi eld of a FeatureClass. For this purpose, the IHistogram and
ITableHistogram interfaces must be used (see Figure 10-12).

FIGURE 10-12

IHistogram CartoUIObjectModel

Histogram

TableHistogram

esriCarto.ITableHistogram

The following code shows that an ITableHistogram is set for the desired table and fi eld. Then,
using the IHistogram interface as shown, you can get the data values and their frequencies.

 ITableHistogram tableHistogram = new TableHistogramClass();
 tableHistogram.Table =countiesFeatureClass as ITable;
 tableHistogram.Field = "POP2000";

 IHistogram histogram = tableHistogram as IHistogram;
 object dataValues, dataFrequencies;
 histogram.GetHistogram(out dataValues, out dataFrequencies);

c10.indd 309c10.indd 309 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

310 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

The next step is to create an appropriate classifi cation instance and call its Classify() method
to create appropriate break points based on the data and its method of classifi cation. Figure 10-13
displays available classifi cation CoClasses in ArcObjects.

FIGURE 10-13

IClassify
SystemObjectModelClassify

DefinedInterval EqualInterval

NaturalBreaks StandardDeviation

Before calling the Classify() method, the histogram data of the dataset must be set for the
Classify object. In addition to histogram data, the number of classes must be known before
performing classifi cation. The following code shows how to obtain this information:

 IClassify classify = new NaturalBreaksClass();
 classify.SetHistogramData(dataValues, dataFrequencies);
 int numOfClasses=5;
 classify.Classify(ref numOfClasses);

The Classify object has a ClassBreaks property which is defi ned in the IClassify interface. The
ClassBreaks property is an object containing actual break points. In order to use the data inside
the ClassBreaks object, you have to cast it to an array of type double.

 double[] classBreaks = new double[numOfClasses];
 classBreaks = (double[])classify.ClassBreaks;

Then an instance of ClassBreaksRenderer has to be created and several properties have to be set.

 IClassBreaksRenderer classBreaksRen = new ClassBreaksRendererClass();
 classBreaksRen.Field = "POP2000";//name of the numeric field
 classBreaksRen.BreakCount = numOfClasses;
 classBreaksRen.MinimumBreak = classBreaks[0];

Then you have to create different symbols for different classes and add them to the renderer in a
loop. In the following Try It Out, you use ClassBreaksRenderer in an add-in button.

TRY IT OUT Rendering Vector Data Using ClassBreaksRenderer
(ClassBreaksRenderer.zip)

 1. Add a new add-in component to your project and name it usingCBRenderer. Select Button as the
type of add-in, provide the information as shown in Figure 10-14, and click Finish.

c10.indd 310c10.indd 310 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 311

 2. Add a reference to the ESRI.ArcGIS.CartoUI and ESRI.ArcGIS.DisplayUI assemblies, and
then enter the following using directives at the top of the usingCBRenderer.cs fi le’s code
window:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.DisplayUI;
using ESRI.ArcGIS.CartoUI;
using ESRI.ArcGIS.esriSystem;

 3. In order to use different colors for different classes of values, you need to create a color ramp.
In the previous Try It Out, you used the RandomColorRamp. This time you make use of the
AlgorithmicColorRamp CoClass. So add the following code in the usingCBRenderer.cs fi le:

 private IEnumColors GetColorRamp(int size)
 {
 IAlgorithmicColorRamp algColorRamp = new AlgorithmicColorRampClass();
 IRgbColor startColor = new RgbColorClass();
 startColor.Red = 255; startColor.Green = 204; startColor.Blue = 204;

 IRgbColor toColor = new RgbColorClass();
 toColor.Red = 219; toColor.Green = 0; toColor.Blue = 0;

 algColorRamp.FromColor = startColor;
 algColorRamp.ToColor = toColor;

FIGURE 10-14

c10.indd 311c10.indd 311 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

312 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

 algColorRamp.Size = size;
 algColorRamp.Algorithm = esriColorRampAlgorithm.esriHSVAlgorithm;
 bool ok = true;
 algColorRamp.CreateRamp(out ok);
 return algColorRamp.Colors;
 }

 4. Add the following code to the button’s OnClick() method:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer layers = map.Layers;
 ILayer layer = layers.Next();
 IFeatureLayer2 countiesFL = null;
 while (layer != null)
 {
 if (layer is IFeatureLayer2 && layer.Name == "U.S. Counties
 (Generalized)")
 {
 countiesFL = layer as IFeatureLayer2;
 }
 layer = layers.Next();
 }
 if (countiesFL == null)
 { return; }

 ITableHistogram tableHistogram = new TableHistogramClass();
 tableHistogram.Table = countiesFL.FeatureClass as ITable;
 tableHistogram.Field = "POP2000";

 IHistogram histogram = tableHistogram as IHistogram;
 object dataValues, dataFrequencies;
 histogram.GetHistogram(out dataValues, out dataFrequencies);

 IClassify classify = new QuantileClass();
 classify.SetHistogramData(dataValues, dataFrequencies);

 int numOfClasses = 5;
 classify.Classify(ref numOfClasses);
 double[] classBreaks = new double[numOfClasses];
 classBreaks = (double[])classify.ClassBreaks;

 IClassBreaksRenderer classBreaksRen = new ClassBreaksRendererClass();
 classBreaksRen.Field = "POP2000";
 classBreaksRen.BreakCount = numOfClasses;
 classBreaksRen.MinimumBreak = classBreaks[0];

 IEnumColors colors = GetColorRamp(numOfClasses);
 IFillSymbol fillSymbol = null;
 for (int i = 0; i < numOfClasses; i++)
 {
 fillSymbol = new SimpleFillSymbolClass();
 fillSymbol.Color = colors.Next();
 classBreaksRen.Symbol[i] = fillSymbol as ISymbol;

c10.indd 312c10.indd 312 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 313

 classBreaksRen.Break[i] = classBreaks[i + 1];
 classBreaksRen.Label[i] = string.Format("{0}___{1}", classBreaks[i],
 classBreaks[i + 1]);
 }

 IGeoFeatureLayer countiesGFL = countiesFL as IGeoFeatureLayer;
 countiesGFL.Renderer = classBreaksRen as IFeatureRenderer;
 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGeography,
countiesGFL, mxdoc.ActiveView.Extent);
 mxdoc.UpdateContents();

 5. Modify the confi guration fi le to place the button on the toolbar:

<Toolbar id="Amirian,_devExperts_GeospatialDataRenderer_Renderer_Toolbar"
caption="Renderer Toolbar" showInitially="true">
 <Items>
 <Item refID="Amirian,_devExperts
_GeospatialDataRenderer_usingSimpleRenderer" />
 <Item refID="Amirian,_devExperts
_GeospatialDataRenderer_usingUniqueValueRenderer" separator="true" />
 <Item refID="Amirian,_devExperts
_GeospatialDataRenderer_usingCBRenderer" separator="true" />
 </Items>
 </Toolbar>

 6. Run your code and add the counties FeatureClass of the USA FeatureDataset. Test the
functionality of your newly developed add-in button.

How It Works

Using ClassBreaksRenderer includes making use of several interfaces for extracting the histogram
of data as well as classifying the data. As you can see, with just instantiating from different subclasses
of the Classify Abstract Class, you can use different classifi cation methods. So if you want to use the
NaturalBreaks classifi cation, all you need to do is to provide the NaturalBreaksClass as the instantia-
tion class, as shown in the following line of code:

IClassify classify = new NaturalBreaksClass();

ScaleDependentRenderer for Vector Data

The ScaleDependentRenderer is available only to ArcObjects developers. Put simply, this
type of FeatureRenderer is an ordered collection of other types of FeatureRenderers.
Each FeatureRenderer in this collection has a corresponding scale for displaying the data
of a FeatureLayer. In other words, using this renderer makes it possible to specify several
FeatureRenderers for a single FeatureLayer. Geospatial data can be displayed in only a single
scale at a time in ArcGIS, so only one FeatureRenderer in ScaleDependentRenderer is enabled
at any time.

The ScaleDependentRenderer has a Breaks property for specifying scale ranges and the
AddRenderer() method for adding FeatureRenderers. Remember: This FeatureRenderer is

c10.indd 313c10.indd 313 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

314 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

an ordered collection of other FeatureRenderers and the order in which the FeatureRenderers
are added must match the order of scale breaks. The following code creates an instance of
ScaleDependentRenderer, adds two FeatureRenderers to it, and specifi es the scale ranges:

 IScaleDependentRenderer sDR = new ScaleDependentRendererClass();
 //Suppose that we have two live objects of type
 //UniqueValueRenderer (uVR)and ClassBreaksRenderer (cBR)
 sDR.AddRenderer(cBR as IFeatureRenderer);

 sDR.Break[0] = 10000000;
 sDR.AddRenderer(uVR as IFeatureRenderer);
 sDR.Break[1] = 40000000;
 countiesGFL.Renderer = sDR as IFeatureRenderer;

This code uses the ClassBreaksRenderer for displaying features at scales greater than
1:10,000,000 (scale denominator <= 10,000,000). In the ranges of 1:10,000,000 and 1:40,000,000,
a UniqueValueRenderer is used to render all the features (10,000,000 < scale denominator <=
40,000,000). At 1:40,000,000 scale and smaller, the layer will not be rendered at all! Note that
break values indicate the absolute scale (or the scale denominator). Figures 10-15 and 10-16 show
counties in 1:12,500,000 and 1:8,000,000 scales, which have been rendered using the preceding
code. Source code for this FeatureRenderer is available in the ScaleDependentRenderer.zip fi le
on this book’s page on Wrox.com.

FIGURE 10-15

c10.indd 314c10.indd 314 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Geospatial Data Display ❘ 315

RasterRGBRenderer for Raster Data

The RasterRGBRenderer is used to display raster data as an RGB composite. This RasterRenderer
is usually used to display multiband rasters, such as aerial and satellite images, as a composite of
red, green, and blue colors. Figure 10-17 shows the main interface and properties for working with
this renderer.

FIGURE 10-16

FIGURE 10-17

RasterRGBRenderer

IRasterRGBRenderer IRasterRGBRenderer: IUnknown

BlueBandIndex: Long

RedBandIndex: Long

GreenBandIndex: Long

UseBlueBand: Boolean

UseRedBand: Boolean

UseGreenBand: Boolean

IRasterRGBRenderer2:IRasterRGBRenderer

AlphaBandIndex: Long

UseAlphaBand: Boolean

IRasterRGBRenderer2

c10.indd 315c10.indd 315 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

316 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

As you can see, indices of a raster’s band are specifi ed through the fi rst three properties and their
usage is determined using the rest of IRasterRGBRenderer’s properties. The AlphaBandIndex
provides transparency for each pixel of the raster using the value of the specifi c band for that pixel.
In the following Try It Out you learn how to use this type of renderer.

TRY IT OUT Rendering Raster Data Using RasterRGBRenderer
(RasterRGBRenderer.zip)

 1. Open the GeospatialDataRenderer solution. Add a new add-in component to your project and
name it usingRasterRGBRenderer. Select Button as the type of add-in, provide the information as
presented in Figure 10-18, and click Finish.

FIGURE 10-18

 2. Add a reference to the ESRI.ArcGIS.DataSourcesRaster assembly, and then enter the following
using directives at the top of the usingRasterRGBRenderer.cs fi le’s code window:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.DataSourcesRaster;

 3. Add the following code to the button’s OnClick() method:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer layers = map.Layers;
 ILayer layer = layers.Next();
 IRasterLayer rasterLayer = null;
 while (layer != null)

c10.indd 316c10.indd 316 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geospatial Data Display ❘ 317

 {
 if (layer is IRasterLayer)
 {
 rasterLayer = layer as IRasterLayer;
 }
 layer = layers.Next();
 }
 if (rasterLayer == null)
 { return; }

 IRaster raster = rasterLayer.Raster;
 IRasterBandCollection rasterBC = raster as IRasterBandCollection;
 if (rasterBC.Count < 3)
 { return; }

 IRasterRGBRenderer2 rgbRen = new RasterRGBRendererClass();
 IRasterRenderer rasRen = rgbRen as IRasterRenderer;
 //little playing with the raster display
 rgbRen.RedBandIndex = 1;
 rgbRen.GreenBandIndex = 2;
 rgbRen.BlueBandIndex = 0;
 //use channel 2 value as transparency value for each pixel
 rgbRen.UseAlphaBand = true;
 rgbRen.AlphaBandIndex = 2;
 rasterLayer.Renderer = rasRen;
 //update is needed
 rasRen.Update();
 mxdoc.UpdateContents();
 mxdoc.ActiveView.Refresh();

 4. Modify the confi guration fi le to put the button on the existing toolbar. Then run your code and
add a raster dataset to your map. Test the functionality of your newly developed add-in button.

How It Works

You can tweak the way any multiband raster is displayed in ArcGIS for Desktop applications using
the properties of the IRasterRGBRenderer2 interface. It’s important to note that after any changes
to the renderer associated with a RasterLayer, you have to update it by calling the Update() method.
Also, as the name suggests, you can access information about the bands of a raster dataset through the
IRasterBandCollection interface.

NOTE As stated in Chapter 6, you can download free satellite images from the
web. For example, the Earth Resources Observation and Science Center (EROS)
of USGS provides satellite images of the world (http://glovis.usgs.gov/).

Refreshing the ActiveView

As mentioned in Chapter 6, the main application window is controlled by the IActiveView
interface. Chapter 9 shows how the ScreenDisplay object, which is accessible through the
IActiveView interface, performs drawing operations in ArcGIS for Desktop applications. Because

c10.indd 317c10.indd 317 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://glovis.usgs.gov/
http://www.it-ebooks.info/

318 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

ArcMap is used as the target of most of the materials in this book, in this section’s discussion of
refreshing, the display is based on ArcMap.

ArcMap has two IActiveView objects: Map and PageLayout. Each object has its own
ScreenDisplay object to perform drawing. The ScreenDisplay object uses different caches to
draw different things. The cache is a bitmap (in memory or saved on disk) representing the main
window of the application. Since reading and writing bitmaps is more effi cient than reading and
writing data from and to a database, using caches improves drawing performance.

The Map object in ArcMap has three caches for Layers, Selections, and Graphics and Annotations.
The second cache (Selection) is for all features and graphics that are highlighted and accessible by
IActiveView’s Selection property. If there is no selected feature or graphic in Map or PageLayout,
the Selection cache is empty. The third cache is for Graphics and Annotations. ArcMap draws
each of these caches within a separate StartDrawing() and FinishDrawing() block of the
ScreenDisplay object.

It is possible to create a cache for any layer. The ILayer interface has a cached property which
is of type Boolean. When this property is set to true, the Map creates another cache for the
specifi ed layer.

There are two methods for refreshing the main window of ArcGIS for Desktop applications.
IActiveView provides Refresh() as well as PartialRefresh() methods to redraw the main
display of the application. Both methods cause a cache invalidation process, which means all
entries in the cache are deleted. But the Refresh() method invalidates all the caches and as a result
redraws all the view phases, while PartialRefresh() redraws the specifi ed view phase. Specifi ed
view phases are defi ned in the esriViewDraw enumeration.

The PartialRefresh() method solicits for three input parameters. The fi rst input is of type
esriViewDraw enumeration. The second and third parameters are optional. The second input is
used to specify the data that is going to be invalidated, and the third input is for specifying the
envelope to be invalidated.

In summary, using the PartialRefresh() method provides higher performance as well as a
smoother user experience.

GOING BEYOND SIMPLE DISPLAY

MapTips go beyond simply labeling the features with text by providing interactive access to data
via the map. When enabled, MapTips pop up as users of ArcGIS for Desktop applications hover the
mouse pointer over a feature. MapTips provide a quick way to explore any feature without using
the Identify tool or opening the attribute table, both of which give users all the feature’s attributes.
Prior to ArcGIS version 10.0, it was only possible to select one fi eld as a source of MapTips.
Fortunately, this behavior has been changed in versions 10.0 and 10.1. Whether simple or advanced,
MapTips make working with geospatial data easier and more comfortable.

In addition to MapTips, hyperlinks provide an easy way to work with geospatial data’s related
information. In contrast to MapTips, hyperlinks can provide additional information about features
and are not limited to values in a FeatureClass’s attribute table. Hyperlinks must be defi ned before a
user can utilize them.

c10.indd 318c10.indd 318 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Going beyond Simple Display ❘ 319

Simple and Advanced MapTips

By default, a value inside the DisplayField is the only piece of data that can be displayed for each
feature as a MapTip. The ShowTips property, which is defi ned on the ILayer interface, enables the
display of MapTips. The following code demonstrates how to enable MapTips for a layer:

 ILayer aLayer = mxdoc.SelectedLayer;
 aLayer.ShowTips = true;

Prior to ArcGIS 10.0, this was the only way to create and manage MapTips. In ArcGIS 10.0 and
10.1, it is also possible to provide expressions in a scripting language to create fl exible and advanced
MapTips. ArcMap contains parsers for VBScript, JScript, and Python, and these parsers can be used
to display MapTips as well as labels.

NOTE In ArcGIS 10.0 there are VBScript and JScript parsers for labeling and
MapTips. In addition to VBScript and JScript, Python parser is added in ArcGIS
10.1 for the same purpose.

The primary interface for displaying fl exible MapTips is IDisplayExpressionProperties. The
simplest way to use this interface is just to set its Expression property. The Expression property
is a string which may contain string literals, the names of fi elds, and the functions of the specifi ed
parser. In the next Try It Out, you create this relatively new feature of ArcObjects.

TRY IT OUT Displaying Advanced MapTips (MapTips.zip)

 1. Open the GeospatialDataRenderer solution, add a new add-in component to your project, and
name it advancedMapTips. Select Button as the type of add-in, provide the information shown in
Figure 10-19, and click Finish.

FIGURE 10-19

c10.indd 319c10.indd 319 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

320 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

 2. Type the following using directives at the top of the advancedMapTips.cs fi le’s code window:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;

 3. Add the following code to the button’s OnClick() method:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IMap map = mxdoc.FocusMap;
IEnumLayer layers = map.Layers;
ILayer layer = layers.Next();
IFeatureLayer2 statesFL = null;
while (layer != null)
{
 if (layer is IFeatureLayer2 &&
 layer.Name == "U.S. States (Generalized)")
 {
 statesFL = layer as IFeatureLayer2;
 }
 layer = layers.Next();
}
if (statesFL == null)
{ return; }

IDisplayString displayString = statesFL as IDisplayString;
IDisplayExpressionProperties dEP = displayString.ExpressionProperties;
if ((statesFL as ILayer).ShowTips == false)
{
 (statesFL as ILayer).ShowTips = true;

 dEP.Expression = string.Format("\"State Name: \" + [STATE_NAME]
 + vbNewline + \"State Abbreviation: \" + [STATE_ABBR]
 + vbNewline + \"Population :\" + [POP2000]");
 this.Checked = true;
}
else
{
 ILayer aLayer = mxdoc.SelectedLayer;
 aLayer.ShowTips = true;
 (statesFL as ILayer).ShowTips = false;
 this.Checked = false;
 dEP.Expression = "";
}

 4. Modify the confi guration fi le to put the
button on the existing toolbar. Then run
your code, add the states FeatureClass
from the USA FeatureDataset, and test
the functionality of your newly developed
add-in button. You should see
Figure 10-20 when you click the button.

How It Works

You set the Expression property of
IDisplayExpressionProperties to display FIGURE 10-20

c10.indd 320c10.indd 320 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Going beyond Simple Display ❘ 321

fl exible MapTips. As you can see in Figure 10-20, the button is checked when MapTips are shown. In
other words, by setting the add-in button’s Checked property, you can create a toggle button.

It is also possible to use the built-in functions of scripting languages to create cool MapTips. Consider
the following line of code:

dEP.Expression = string.Format("\"State Name: \" + UCase([STATE_NAME]) + vbNewline
+ \"State Abbreviation: \" + [STATE_ABBR] + vbNewline + \"Population: \" +
 FormatNumber([POP2000],0)");

This code uses two built-in functions of VBScript, both of which are self-explanatory. The UCase()
function converts a string to uppercase, and the FormatNumber() function returns a formatted number
value for numeric expression. The output of the preceding line of code is shown in Figure 10-21.

FIGURE 10-21

Another important point in this example is that the same expression can be seen in the Identify
window.

Hyperlinks

Hyperlinks are a basic and primitive facility of ArcGIS for communicating with the outside
world. Hyperlinks make it possible to jump to a website or open a Microsoft Word document from
inside ArcGIS for Desktop applications.

c10.indd 321c10.indd 321 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

322 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

NOTE As you will see shortly, you have to use diff erent interfaces based on the
type of resource you want to use. Hyperlinks come in two fl avors. Hyperlinks
defi ned based on a fi eld are called fi eld-based hyperlinks, and you have to use
the IHotlinkContainer interface for them. If you want to use dynamic hyper-
links, you have to use the IHyperlinkContainer. Both interfaces are supported
by the FeatureLayer CoClass and both support URLs as well as documents.

For creating fi eld-based hyperlinks through the user interface of ArcGIS for
Desktop applications, the Display tab of the Layer Properties window must be
used. To set a dynamic hyperlink for a feature, click on a feature with the Identify
tool. Right-click the feature name in the Identify dialog box and choose Add
Hyperlink from the context menu. Select the type of hyperlink (Document or URL)
and specify the address of the document or Uniform Resource Locator (URL)
of the website. It is possible to add multiple dynamic hyperlinks for the same
feature.

The following code sets the fi eld-based hyperlink for a FeatureLayer based on a fi eld called
HotLinkFieldName. This example assumes that there is a fi eld in a FeatureClass’s attribute table
with values in the form of URLs.

 string hotlinkField = "HotLinkFieldName";
 IFeatureLayer2 featureL =
 (ArcMap.Application.Document as IMxDocument).FocusMap.Layer[0] as
 IFeatureLayer2;
 IHotlinkContainer hLContainer = featureL as IHotlinkContainer;
 hLContainer.HotlinkField = hotlinkField;
 hLContainer.HotlinkType = esriHyperlinkType.esriHyperlinkTypeURL;

As previously mentioned, fi eld-based hyperlinks are dependent on a resource. In addition, in
ArcObjects it is possible to create dynamic hyperlinks that have no dependency on fi elds. This
facility can be used to create more intelligent hyperlinks. You learn how to create dynamic
hyperlinks in the following Try It Out.

TRY IT OUT Creating Dynamic Hyperlinks (Hyperlinks.zip)

 1. Add a new add-in component to your project and name it usingDynamicHyperlink. Select Button
as the type of add-in.

 2. Type the following using directives at the top of the usingDynamicHyperlink.cs fi le’s code
window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geometry;
using System.Runtime.InteropServices;

c10.indd 322c10.indd 322 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Going beyond Simple Display ❘ 323

 3. Add the following code to the button’s OnClick() method:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IMap map = mxdoc.FocusMap;
IEnumLayer layers = map.Layers;
ILayer layer = layers.Next();
IFeatureLayer2 statesFL = null;
while (layer != null)
{
 if (layer is IFeatureLayer2 &&
 layer.Name == "U.S. States (Generalized)")
 {
 statesFL = layer as IFeatureLayer2;
 }
 layer = layers.Next();
}
if (statesFL == null)
{ return; }

IHyperlinkContainer statesHLC = statesFL as IHyperlinkContainer;
if (this.Checked == false)
{
 this.Checked = true;

 IFeatureCursor featureCursor = statesFL.FeatureClass.
 Search(null, true);

 IFeature feature = featureCursor.NextFeature();

 while (feature != null)
 {
 IHyperlink hyperlink = new HyperlinkClass();
 hyperlink.LinkType = esriHyperlinkType.esriHyperlinkTypeURL;
 IPoint centroid = (feature.Shape as IArea).Centroid;
 string link = string.Format(
 "http://www.openstreetmap.org/?lat={0}&lon={1}&zoom=9",
 centroid.Y, centroid.X);
 hyperlink.Link = link;
 hyperlink.FeatureId = feature.OID;
 statesHLC.AddHyperlink(hyperlink);
 feature = featureCursor.NextFeature();
 }
}
else
{
 this.Checked = false;
 int numberOfHL = statesHLC.HyperlinkCount;
 for (int i = 1; i <= numberOfHL; i++)
 {
 statesHLC.RemoveHyperlink(0);
 }
}

c10.indd 323c10.indd 323 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.openstreetmap.org/?lat={0}&lon={1}&zoom=9
http://www.it-ebooks.info/

324 ❘ CHAPTER 10 RENDERING GEOSPATIAL DATA AND USING HYPERLINKS AND MAPTIPS

 4. Mod ify the confi guration fi le to put the button on the existing toolbar. Then run your code and
add the states FeatureClass from the USA FeatureDataset. In order to test the functionality of the
add-in button, click on the button, use the Hyperlink tool on ArcMap’s Tools toolbar, and click
one of the features.

How It Works

In this example, you iterate through all features in a FeatureClass and create a hyperlink based on the
location of each feature’s centroid, one by one. The hyperlinks are in the form of a shortlink URL of
OpenStreetMap. Then you add all hyperlinks to the FeatureLayer using the IHyperlinkContainer
interface.

Clicking the add-in button activates the Hyperlink tool on the Tools toolbar of ArcMap. This means
dynamic hyperlinks are added to one of the layers in the map. Note that the container acts like a collec-
tion, which means adding or removing items to and from it will change the index of items inside it. This
is why you have to call the RemoveHyperlink() method to remove the fi rst item several times in order
to remove all hyperlinks in HyperlinkContainer. You can also tweak the zoom level of hyperlinks
(use the zoom=9 key-value pair in the URL) based on the MapScale property of the IMap interface.
(As an exercise, try to change the code slightly to create a more synchronized view between the map
and OpenStreetMap.)

SUMMARY

One of the primary tasks of a GIS professional is to make maps. Properly displaying geospatial
data is the fi rst step in the process of map creation. ArcObjects contains a rich set of types for
displaying geospatial data; fortunately or unfortunately, that means there are several ways to display
geospatial data properly. In this chapter, you explored some of the most widely used methods for
displaying geospatial data. Some features of ArcGIS for Desktop applications, such as MapTips and
hyperlinks, provide an easier way to deal with geospatial data and bring additional information into
GIS. Having mastered all the material covered in this chapter (colors, color ramps, symbols, and so
forth), you are ready to work through the next chapter.

EXERCISES

 1. What is the default renderer for raster data?

 2. Which interface of the FeatureLayer CoClass is used for assigning a FeatureRenderer to a

FeatureLayer?

 3. Which interfaces are in charge of classifi cation of a numeric fi eld?

 4. Which renderer type is not available in the ArcGIS for Desktop application user interface?

You will fi nd the answers to these exercises in this book’s appendix.

c10.indd 324c10.indd 324 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 325

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Refreshing

ActiveView

There are two methods for refreshing the main window of ArcGIS for

Desktop applications. IActiveView provides Refresh() as well as

PartialRefresh() methods to redraw the main display of applications.

Both methods cause a cache invalidation process, which means all entries

in the cache are deleted. The Refresh() method invalidates all the caches,

and as a result, redraws all the view phases. PartialRefresh() redraws

the specifi ed view phase. As a result, PartialRefresh()provides higher

performance.

Using multiple

fi elds in MapTips

In ArcGIS 10.0 and 10.1, it is possible to provide expressions in VBScript,

JScript, and Python (in just ArcGIS 10.1) scripting languages to create fl exible

and advanced MapTips. These parsers can be used to display MapTips

as well as labels. The primary interface for displaying fl exible MapTips is

IDisplayExpressionProperties. In addition to multiple fi elds, it is also

possible to make use of built-in functions of the scripting language to create

more fl exible and helpful MapTips.

Creating

dynamic

hyperlinks

In ArcObjects, in addition to fi eld-based hyperlinks, it is also possible

to create dynamic hyperlinks that have no dependency on fi elds. This

facility can be used to create more intelligent hyperlinks. Through dynamic

hyperlinks, it is also possible to set multiple hyperlinks for a single feature.

The primary interfaces for creating dynamic hyperlinks are IHyperlink and

IHyperlinkContainer.

c10.indd 325c10.indd 325 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c10.indd 326c10.indd 326 25/02/13 4:21 PM25/02/13 4:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling, Exporting ActiveView,
and Working with Elements

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Displaying fl exible labels

 ➤ Labeling with the Maplex engine

 ➤ Exporting an ActiveView to diff erent formats

 ➤ Including attribute data in PDF fi les

 ➤ Adding a graphic element

 ➤ Getting an item from the Style Manager window

 ➤ Adding north arrows and scale bars to a page layout

 ➤ Working with tools and the Tool Palette Add-in

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter11 folder and
is individually named according to the names throughout the chapter.

This chapter covers topics related to creating softcopy outputs out of geospatial data. Creating
outputs can be seen as a fi nal step of working with geospatial data. Often, the softcopy output
of geospatial data is all that is needed as the fi rst step of a decision-making process. In this
regard, creating fl exible, intuitive, and appropriate outputs is an important aspect of working
with geospatial data.

This chapter presents an overview of making different kinds of labels using the standard as
well as the Maplex labeling engine. Exporting an ActiveView is covered in detail next, and

11

c11.indd 327c11.indd 327 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

328 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

working with elements is the last topic. Along the way, you also learn about getting items from the
Style Manager window and developing a Tools add-in. Placing tools on the Tool Palette is also
covered in this chapter.

LABELING

Figure 11-1 shows the object model diagram for labeling. The map (Data Frame) uses a single
labeling engine for all FeatureLayers. There are two possible labeling engines. The default labeling
engine is called the Standard Label Engine. In addition to the standard (default) labeling engine, it
is also possible to take advantage of a more fl exible labeling engine — the Esri Maplex Label Engine.

FIGURE 11-1

CartoObjectModel
IGeoFeatureLayer

FeatureLayer

LabelEngineLayerProperties MaplexLabelEngineLayerProperties

AnnotateLayerPropertiesCollection

IAnnotateLayerPropertiesCollection

AnnotateLayerProperties

IAnnotateLayerProperties

As mentioned in previous chapters, the IGeoFeatureLayer interface controls the display settings
for FeatureLayer instances. One of these settings is labeling, which is controlled by a collection
called AnnotateLayerPropertiesCollection. Using this collection, it is possible to assign more
than one labeling setting for a given FeatureLayer.

c11.indd 328c11.indd 328 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling ❘ 329

The following line of code demonstrates the relationship between IGeoFeatureLayer and the
collection.

IAnnotateLayerPropertiesCollection annotateLPC = geoFeatureLayer.
AnnotationProperties;

The actual labeling settings such as the
expression of labels and the minimum and
maximum scales for displaying one set
of labels for a FeatureLayer are managed
by the IAnnotateLayerProperties
interface. This interface is defi ned by the
AnnotateLayerProperties Abstract
Class. There are two concrete subclasses for
this Abstract Class (see Figure 11-1). The
LabelEngineLayerProperties CoClass is
the default and standard container for labeling
settings. In other words, there is no need to have
a special extension or to modify the settings in
order to use this labeling engine.

Previous versions of ArcGIS included an extension
called Maplex. Maplex provided a way to create
more fl exible and professional labels and have a
lot more control on the labeling process. Starting
with the release of ArcGIS 10.1, the functionality
of Maplex is included in the core ArcGIS for
Desktop software along with the Standard Label
Engine. As a curious user of ArcGIS for Desktop
applications, you can check this as shown in
Figure 11-2 if you right-click on any Data Frame
and select Properties in ArcGIS 10.1.

NOTE Maplex labeling is available for ArcGIS 10.0 through a separate extension
that you can purchase.

Labeling with the Default Labeling Engine

The following lines of code demonstrate how to create an instance of the default label engine class
and set its properties:

IAnnotateLayerProperties annotateLP = new LabelEngineLayerPropertiesClass();
annotateLP.Class = "Between 5m and 20m";
annotateLP.AnnotationMaximumScale = 5000000;
annotateLP.AnnotationMinimumScale = 20000000;

FIGURE 11-2

c11.indd 329c11.indd 329 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

330 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

In order to defi ne the expression for labeling, you need to switch to another interface. Suppose that
you want to create labels based on the Name fi eld.

ILabelEngineLayerProperties2 labelELP = annotateLP as ILabelEngineLayerProperties2;
labelELP.Expression = string.Format("\"Name: \" + UCase([NAME])");

At this point, you need to add these settings to the collection that is associated with the
FeatureLayer (AnnotateLayerPropertiesCollection) and then refresh the ActiveView.

annotateLPC.Clear();
geoFeatureLayer.DisplayAnnotation = true;
annotateLPC.Add(annotateLP);
ActiveView.Refresh();

In the following Try It Out, you create two classes of label settings and display them using the
default label engine.

TRY IT OUT Labeling Using the Default Labeling Engine (DefaultLabelling.zip)

 1. As always, create a new ArcMap Add-in project. Name the solution CreatingOutputs. In the
Add-Ins Wizard, provide the necessary information in the Welcome page and then click the
Next button. Select Button as the type of add-in, and provide the information as it is shown in
Figure 11-3 and click Finish.

FIGURE 11-3

 2. Add an ESRI.ArcGIS.Carto reference to your project and type the following using directives at
the top of the defaultLabelling.cs fi le’s code window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.ArcMapUI;

c11.indd 330c11.indd 330 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling ❘ 331

 3. Add the following code to the button’s OnClick() method:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;

 IEnumLayer layers = map.Layers;
 ILayer layer = layers.Next();
 IFeatureLayer2 statesFL = null;

 while (layer != null)
 {
 if (layer is IFeatureLayer2 && layer.Name == "U.S. States
 (Generalized)")
 {
 statesFL = layer as IFeatureLayer2;
 }
 layer = layers.Next();
 }
 if (statesFL == null)
 { return; }
 IGeoFeatureLayer geoFeatureL = statesFL as IGeoFeatureLayer;
 IAnnotateLayerPropertiesCollection annotateLPC = geoFeatureL.
 AnnotationProperties;

 annotateLPC.Clear();
 geoFeatureL.DisplayAnnotation = true;

 IAnnotateLayerProperties annotateLP = new
 LabelEngineLayerPropertiesClass();
 IAnnotateLayerProperties annotateLP2 = new
 LabelEngineLayerPropertiesClass();

 annotateLP.Class = "LowerScale";
 annotateLP.AnnotationMaximumScale = 5000000;
 annotateLP.AnnotationMinimumScale = 20000000;

 annotateLP2.Class = "HigherScale";
 annotateLP2.AnnotationMaximumScale = 1000000;
 annotateLP2.AnnotationMinimumScale = 5000000;

 ILabelEngineLayerProperties2 labelELP1 = annotateLP as
 ILabelEngineLayerProperties2;
 ILabelEngineLayerProperties2 labelELP2 = annotateLP2 as
 ILabelEngineLayerProperties2;

 labelELP1.Expression = string.Format("\"State Name: \" +
 UCase([STATE_NAME]) + vbNewline + \"State Abbreviation: \" +
 [STATE_ABBR] + vbNewline + \"Population: \" + FormatNumber([POP2000],0)");

 labelELP2.Expression = "\"State Name: \" + [STATE_NAME]";

 annotateLPC.Add(annotateLP);
 annotateLPC.Add(annotateLP2);

 mxdoc.ActiveView.Refresh();

c11.indd 331c11.indd 331 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

332 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 4. Add a new add-in command container (toolbar) and name it OutputToolbar. Select Toolbar as
the type of Add-in Command Bars and add the reference to the newly created button. Run the
code and add the states FeatureClass from the USA FeatureDataset. Click the button and change
the display scale to 1:9,000,000; you should see what is shown in Figure 11-4.

FIGURE 11-4

If you change the display scale to 1:5,000,000, the label engine will display both label classes, as
shown in Figure 11-5.

FIGURE 11-5

c11.indd 332c11.indd 332 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling ❘ 333

How It Works

In this example you set the minimum and maximum scales and the expression for two classes of labels.
As you saw, these scales are inclusive. This is why both classes of labels were displayed at scale of
1:5,000,000. In addition to the scale of display, you can make use of conditions to determine the fea-
tures to be labeled. For example, if you add the following line of code, you enforce the labeling engine
to just create labels for those states with a population of more than four million.

annotateLP.WhereClause = "POP2000 > 4000000";

The result of this code is shown in Figure 11-6.

FIGURE 11-6

c11.indd 333c11.indd 333 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

334 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

Labeling with the Maplex Labeling Engine

In order to use the Esri Maplex Label Engine, you need to change the Map object’s AnnotationEngine
property. In this case, the default labeling engine, which is of type AnnotateMap, should be
changed to an instance of MaplexAnnotateMap. Consider the following code, which creates a new
MaplexAnnotateMap instance and sets it as the AnnotationEngine of the Map object:

 IAnnotateMap2 annMap = new MaplexAnnotateMapClass();
 map.AnnotationEngine = annMap as IAnnotateMap;

In addition, you need to instantiate from an appropriate AnnotateLabelProperties subclass.

IAnnotateLayerProperties annotateLP = new MaplexLabelEngineLayerPropertiesClass();

In order to run this code, you need to add a reference to the ESRI.ArcGIS.Display and
ESRI.ArcGIS.Maplex assemblies. Figure 11-7 displays the result of using the Maplex Label
Engine.

FIGURE 11-7

c11.indd 334c11.indd 334 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling ❘ 335

WARNING As shown in Figure 11-8, you may not fi nd the ESRI.ArcGIS.Maplex
assembly in the Add ArcGIS Reference window.

FIGURE 11-8

In this case, right-click the References folder in the Solution Explorer window and
choose Add Reference. Then select the Esri.ArcGIS.Maplex assembly below
the .NET tab, as shown in Figure 11-9.

FIGURE 11-9

Note that if you change the labeling engine to Maplex, in order to use the default
labeling engine you need to change it back to an instance of the AnnotateMap
class. So as a best programming practice, make sure to include the following
lines of code when working with the default labeling engine.

 IAnnotateMap2 annMap = new AnnotateMapClass();
 map.AnnotationEngine = annMap as IAnnotateMap;

c11.indd 335c11.indd 335 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

336 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

In most cases, using the Maplex engine provides more natural labels (refer to Figure 11-7); as a result,
users can communicate with the map in a more intuitive manner. For this reason, if you are going to
print and disseminate a paper version of the map, consider using the Maplex Label Engine. You can
fi nd the whole source code for using the Maplex labeling button in the MaplexLabeling.cs
fi le on this book’s page on Wrox.com.

EXPORTING THE ACTIVEVIEW

Some situations make it necessary to export the ActiveView — for example, exporting ActiveView
to *.png fi les to put them in a web page or Microsoft Word document. In these cases, you can
take advantage of the types in the ArcObjects Output library to perform this task. There are ten
supported formats for exporting maps: BMP, JPEG, PNG, TIFF, GIF, EMF, PostScript, Adobe
Illustrator artwork, PDF, and SVG. Figure 11-10 shows most classes in the Output library.

FIGURE 11-10

IExport

OutputObjectModel Export

ExportEMF

ExportPS

ExportAI

ExportPDF

ExportSVG

ExportImage

IExportImage

ExportVector

IExportVectorOptions

IExportPDF2

ExportBMP

ExportJPEG

ExportPNG

ExportTIFF

ExportGIF

c11.indd 336c11.indd 336 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Exporting the ActiveView ❘ 337

As Figure 11-10 illustrates, the ultimate parent class of all export classes is the Export Abstract
Class, which defi nes the IExport interface. In most cases, all you need to export an ActiveView to
a raster or vector fi le is the address of the output fi le and the target resolution. The following steps
demonstrate the simplest approach to exporting ActiveView.

 1. Create and instantiate the appropriate exporter object. Then set the address of the output
fi le and its resolution using the properties of the IExport interface.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IExport exporter = new ExportPNGClass();
 exporter.ExportFileName = @"c:\test.png";
 exporter.Resolution = 96;

In order to change the output’s format, you can easily change the instantiation phrase. The
following code creates *.SVG output:

 IExport exporter = new ExportSVGClass();
 exporter.ExportFileName = @"c:\test.svg";

 2. Defi ne an envelope that specifi es the pixel bounds of the output fi le. This rectangle must be
set using the PixelBounds property of the exporter object. You can use the ExportFrame
property of the ActiveView to create this envelope:

The ExportFrame property is of type tagRECT structure. For this reason, you cannot simply
type the following line of code.

//the following line of code doesn't compile
exporter.PixelBounds = activeView.ExportFrame;

NOTE The type of Envelope is a class while the type of tagRECT is a structure.
There is a signifi cant diff erence in the way that .NET manages classes and struc-
tures. Remember that when you speak about types in .NET, you mean precisely
the members of the following set: enumerations, classes, structures, interfaces,
and delegates. All these types can be categorized as either value types or refer-
ence types. Put simply, structures are value types and are created in the stack
part of memory. In contrast, classes are reference types and reside in the man-
aged heap in memory.

In addition to the subtle difference between classes and structures, there the tagRECT
structure and the Envelope class have another important difference. As Figure 11-11,
illustrates, the direction of the y axis in the Envelope coordinate system is the opposite
of the y axis of the tagRECT coordinate system.

For this reason, if you need to defi ne an Envelope instance that covers the whole
ActiveView, you should use the following code pattern:

c11.indd 337c11.indd 337 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

338 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 IEnvelope pixelBBOX = new EnvelopeClass();
 pixelBBOX.XMin = activeView.ExportFrame.left;
 pixelBBOX.XMax = activeView.ExportFrame.right;

 pixelBBOX.YMin = activeView.ExportFrame.top;
 pixelBBOX.YMax = activeView.ExportFrame.bottom;

 exporter.PixelBounds = pixelBBOX;

 3. Allocate the required memory for the exporter object and then call the ActiveView’s
Output() method to perform the export process. The required memory is allocated using
the exporter object’s StartExporting() method.

The StartExporting() method returns an integer number representing the device context handle
that is managed by the Windows operating system. Then the ActiveView’s Output() method can be
invoked.

 int hdc = exporter.StartExporting();
 //since a property cannot be passed as ref or out parameter
 //you need another tagRECT variable
 tagRECT exporterRectangle;
 exporterRectangle = activeView.ExportFrame;
 activeView.Output(hdc, (int)exporter.Resolution

FIGURE 11-11

Origin of tagRECT
Coordinates

tagRect.Left

tagRECT.Top

tagRECT.Bottom

tagRECT.Right

Envelope

Envelope.XMinOrigin of Envelope
Coordinates

tagRECT

Envelope.XMax

Envelope.YMin

Envelope.YMax

c11.indd 338c11.indd 338 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting the ActiveView ❘ 339

 , ref exporterRectangle, null, null);
 //cleanup code to deallocate the memory
 exporter.FinishExporting();
 exporter.Cleanup();

The Output() method asks for three mandatory parameters. The fi rst parameter specifi es the
handle of the output device and is an integer number that has its value assigned by the exporter
object’s StartExporting() method. The second parameter is an integer representing the DPI
(dots per inch) resolution of the output fi le. The last parameter defi nes the export rectangle and is
identical to the ActiveView’s ExportFrame property. The rest of the code is for memory cleanup.
The complete code for the simplest possible export of the ActiveView follows.

using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Output;
using ESRI.ArcGIS.Carto;

protected override void OnClick()
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;

 IExport exporter = new ExportPNGClass();
 exporter.ExportFileName = @"c:\test.png";
 exporter.Resolution = 96;

 IEnvelope pixelBBOX = new EnvelopeClass();
 pixelBBOX.XMin = activeView.ExportFrame.left;
 pixelBBOX.XMax = activeView.ExportFrame.right;
 pixelBBOX.YMin = activeView.ExportFrame.top;
 pixelBBOX.YMax = activeView.ExportFrame.bottom;

 exporter.PixelBounds = pixelBBOX;

 int hdc = exporter.StartExporting();
 tagRECT exporterRectangle = activeView.ExportFrame;
 activeView.Output(hdc, (int)exporter.Resolution, ref exporterRectangle,
 null, null);
 exporter.FinishExporting();
 exporter.Cleanup();
}

In order to run this code, you need to add references to the ESRI.ArcGIS.Geometry and
ESRI.ArcGIS.Output assemblies. The preceding source code can be found on this book’s page on
Wrox.com in the SimpleExportingActiveView.cs fi le.

c11.indd 339c11.indd 339 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

340 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

NOTE The preceding code used 96 as the output resolution (the exporter
object’s Resolution property). In reality, most Windows operating systems are
shipped with the display resolution set to 96 DPI. If you need to export at higher
resolutions (such as 300 DPI), all you need is to multiply the size of exporter
Rectangle and PixelBounds of the exporter by the ratio of target resolution
and screen resolution.

In order to get the screen resolution, you must add a Reference to the System
.Windows.Forms assembly and use the following code:

 private int getScreenResolution()
 {
 System.Windows.Forms.Form myForm = new System.Windows.
 Forms.Form();
 System.Drawing.Graphics myGraphic = myForm.
 CreateGraphics();
 return (int)myGraphic.DpiX;
 }

Then you need to calculate the ratio to make the correct rectangle for output as
well as for the envelope that covers all the pixels of the map.

int screenRes = getScreenResolution();
 int outputRes = 300;
 exporter.Resolution = outputRes;
 double ratio = (double)outputRes / screenRes;

 IEnvelope pixelBBOX = new EnvelopeClass();
 pixelBBOX.XMin = activeView.ExportFrame.left * ratio;
 pixelBBOX.XMax = activeView.ExportFrame.right * ratio;
 pixelBBOX.YMin = activeView.ExportFrame.top * ratio;
 pixelBBOX.YMax = activeView.ExportFrame.bottom * ratio;
 exporter.PixelBounds = pixelBBOX;

 tagRECT exporterRectangle;
 exporterRectangle.left = activeView.ExportFrame.left *
 (int)ratio;
 exporterRectangle.bottom = activeView.ExportFrame.
 bottom * (int)ratio;
 exporterRectangle.top = activeView.ExportFrame.top *
 (int)ratio;
 exporterRectangle.right = activeView.ExportFrame.
 right * (int)ratio;

 int hdc = exporter.StartExporting();
 activeView.Output(hdc, outputRes, ref
 exporterRectangle, null, null);
 exporter.FinishExporting();
 exporter.Cleanup();

You can fi nd the code for high-resolution exporting of an ActiveView on this
book’s page on Wrox.com in the HighResExportingActiveView.cs fi le.

c11.indd 340c11.indd 340 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Exporting the ActiveView ❘ 341

The ExportPDF CoClass (a subclass of the Export Abstract Class) provides some interesting
facilities. In the following Try It Out, you export attributes and create standard output using the
export process.

TRY IT OUT Creating a PDF with Additional Content (PDFwithAdditionalContent.zip)

 1. Add a new add-in component to the CreatingOutputs solution you created in the preceding Try It
Out and name the component PDFwithAdditionalContent. Select Button as the type of add-in, set
the confi guration of the button as shown in Figure 11-12, then click Finish.

FIGURE 11-12

 2. Add references to ESRI.ArcGIS.Display and System.Windows.Forms, then enter the following
using directives at the top of the PDFwithAdditionalContent.cs fi le’s code window.

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Output;
using ESRI.ArcGIS.Carto;

c11.indd 341c11.indd 341 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

342 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 3. In the code fi le of newly created button, add a method to get the resolution of the current screen.

 private int getScreenResolution()
 {
 System.Windows.Forms.Form myForm = new System.Windows.Forms.Form();
 System.Drawing.Graphics myGraphic = myForm.CreateGraphics();
 return (int)myGraphic.DpiX;
 }

 4. Add the following code to the button’s OnClick() method:

 IMxDocument mxdoc = ArcMap.Application.Document as
 IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;

 IExport exporter = new ExportPDFClass();
 exporter.ExportFileName = @"c:\MapWithContent.pdf";
 int screenRes = getScreenResolution();
 int outputRes = 300;
 exporter.Resolution = outputRes;
 double ratio = (double)outputRes / screenRes;

 IEnvelope pixelBBOX = new EnvelopeClass();
 pixelBBOX.XMin = activeView.ExportFrame.left * ratio;
 pixelBBOX.XMax = activeView.ExportFrame.right * ratio;
 pixelBBOX.YMin = activeView.ExportFrame.top * ratio;
 pixelBBOX.YMax = activeView.ExportFrame.bottom * ratio;
 exporter.PixelBounds = pixelBBOX;

 tagRECT exporterRectangle;
 exporterRectangle.left = activeView.ExportFrame.left * (int)ratio;
 exporterRectangle.bottom = activeView.ExportFrame.bottom * (int)ratio;
 exporterRectangle.top = activeView.ExportFrame.top * (int)ratio;
 exporterRectangle.right = activeView.ExportFrame.right * (int)ratio;

 IExportPDF2 ePDF = exporter as IExportPDF2;
 ePDF.ExportMeasureInfo=true;
 ePDF.ExportPDFLayersAndFeatureAttributes = esriExportPDFLayerOptions.
 esriExportPDFLayerOptionsLayersAndFeatureAttributes;

 int hdc = exporter.StartExporting();
 activeView.Output(hdc, outputRes, ref exporterRectangle, null, null);
 exporter.FinishExporting();
 exporter.Cleanup();

 5. Place the newly created button on the Output toolbar by modifying the confi guration fi le and
run the code. In ArcMap, add the cities and states FeatureClasses to the map and press the
PDFwithAdditionalContent button to export the map along with all the attributes of the two
FeatureClasses.

 6. Open the created fi le (C:\MapWithContent.pdf) with Adobe Reader software. From the
Navigation panels in the View menu, select Model Tree. The Model Tree appears on the left
side of the application and displays two expandable nodes for two layers. Using the Model Tree,
it is possible to select a feature (by selecting the name of the feature), and its attributes will be
displayed in the lower list, as shown in Figure 11-13.

c11.indd 342c11.indd 342 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting the ActiveView ❘ 343

FIGURE 11-13

 7. Using the Model Tree it is possible to select and zoom to a feature by its name. In order to select
a feature interactively you can use the Object Data tool from the Analysis toolbar. Display the
Analysis toolbar by selecting the Analysis item from the View menu’s Toolbars submenu. Then
select the Object Data tool (a tool with an icon similar to the Identify tool in ArcMap) and double
click on a feature to make it selected on the map and show its attributes in the Model Tree at the
same time, as shown in Figure 11-14.

FIGURE 11-14

c11.indd 343c11.indd 343 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

344 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 8. The PDF document contains the geographical coordinates from the map and is therefore aware
of the mouse pointer’s location. From the Analysis toolbar, select the Geospatial Location tool
and the software will display the geospatial location of the mouse cursor (see Figure 11-15).

FIGURE 11-15

 9. Because the Geospatial Location tool is selected in Adobe Reader, it is also possible to fi nd a
location based on its coordinates pair. Right-click somewhere in the PDF fi le when the Geospatial
Location tool is selected and select Find A Location from the context menu. Enter values for
latitude and longitude (for example, 32 and -99) and click the Find Next button to mark the
entered coordinates in the PDF fi le, as shown in Figure 11-16.

FIGURE 11-16

c11.indd 344c11.indd 344 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting the ActiveView ❘ 345

How It Works

You learn in this Try It Out that by means of setting two properties of an interface, you can embed
attributes and measurement information in PDF output. Also, it is possible to control the visibility of
layers in a PDF fi le using the Layers panel. Just select Layers from the Navigation panel’s submenu in
the View menu (see Figure 11-17). ExportPDFClass provides this capability by default.

FIGURE 11-17

In addition to measurement information, visibility, and attribute data, it is possible to set user and master
passwords using the IExportPDFPasswordSecurity interface, which is implemented by the ExportPDF
CoClass. As you have witnessed, exporting an ActiveView as a PDF fi le can include advanced functional-
ity that makes PDF a suitable softcopy format for simple exchanging of geospatial data.

Keep in mind, however, that exporting an ActiveView to a PDF fi le (including attribute data) can result
in large fi les, which leads to performance problems when viewing the fi le in supported PDF readers. It is
a good idea to limit exported attributes to one layer per map.

NOTE There are quite a lot of software applications capable of reading and
editing the PDF fi le format. Usually the name of tools, panels, toolbars,
and menus in various software applications are diff erent. In the preceding Try
It Out, all the instructions are based on the free Adobe Reader. Note that if you
use software other than Adobe Reader, you might not have all the capabilities
indicated in this Try It Out. If you run the code and open the created fi le but you
don’t fi nd all the capabilities, download the free Adobe Reader and test the
functionality of the newly created button.

c11.indd 345c11.indd 345 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

346 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

WORKING WITH ELEMENTS

Chapter 10 explains that in order to display anything in ArcGIS for Desktop applications, some
kind of symbol object should be used, and there are many different kinds of symbols. This section’s
topic — elements — is similar to the topics discussed in Chapter 10.

Elements are things like north arrows, scale bars, markers, and text that can be added to a map
(Data view) or page layout (Layout view). When working with elements, it is always necessary to
work with symbols, colors, and geometries to defi ne and set different properties.

Figure 11-18 illustrates the simplifi ed object model diagram of working with elements. This diagram
makes it obvious that a map and PageLayout can be composed of several elements. Each element has
a geometry that is defi ned in the IElement interface. In fact, IElement defi nes the location of an
element using the Geometry property. An important tip is that the geometry of an element can be
defi ned using map or PageLayout units. For example, if the element must be added to the map, its
geometry has to be defi ned using map units.

There are two categories of elements: graphic elements and frame elements. Graphic elements are
the elements that are not related to a map’s content, while frame elements are dependent on a map’s
content. For example, if you add a marker element (a graphic element instance) and north arrow
(a frame element instance) to a page layout and then rotate the Data Frame (using the Rotate Data
Frame command on the Data Frame Tools toolbar), you will see that just the north arrow will be
rotated automatically to be synchronized with the map.

Both types of elements can be added using the IGraphicsContainer interface, which is
implemented by both the Map and PageLayout classes. This interface has many methods to add,
delete, and fi nd elements. The following code demonstrates how to iterate through all elements in a
page layout and report basic information about all the elements:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IGraphicsContainer graphicsContainer = mxdoc.PageLayout as IGraphicsContainer;
 graphicsContainer.Reset();

 IElement element = graphicsContainer.Next();
 string elementReport = null;
 while (element != null)
 {
 //use IElementProperties interface to get or set the Name of an
 //Element
 IElementProperties elementProp = element as IElementProperties;
 elementReport += string.Format("Name:{0} Type:{1} \n",
 elementProp.Name, elementProp.Type);
 element = graphicsContainer.Next();
 }
 MessageBox.Show(elementReport);

c11.indd 346c11.indd 346 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Elements ❘ 347

FIGURE 11-18

CartoObjectModel

MapFrame

Map and PageLayout

In Carto

Geometry in

Geometry

IFrameElement

FrameElementBase

IGrphicElement

GraphicElement

MapSurroundFrame

0…*

IMapSurround

MapSurround

MarkerNorthArrow ScaleText Legend

MarkerElement

LineElement

TextElement

ScaleBar

AlternatingScaleBar

IElement

Element

IGraphicsContainer

To test the preceding code, you can create a button add-in and paste the code into its OnClick()
method. Add some elements such as north arrow, scale bar, and so on to the Layout view and press
the button. (See Figure 11-19.)

c11.indd 347c11.indd 347 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

348 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

As the preceding code shows, it is possible to access the name of an element using
IElementProperties.

Apart from this dependency to a map’s content, FrameElements can be added only to PageLayout,
while GraphicElements can be added to a PageLayout as well as a map.

Adding GraphicElements

In order to add a GraphicElement instance to a map or PageLayout, you need to create the
appropriate Symbol object and assign it to the GraphicElement’s Symbol property. Then the
GraphicElement should be added to the map or PageLayout using the IGraphicsContainer
interface.

 IRgbColor color = new RgbColorClass();
 color.Red = 255; color.Blue = 0; color.Green = 0;

 IRgbColor outlineColor = new RgbColorClass();
 outlineColor.Red = 0; outlineColor.Blue = 255; outlineColor.Green = 0;

 ISimpleMarkerSymbol simpleMarkerSymbol = new SimpleMarkerSymbolClass();
 simpleMarkerSymbol.Color = color;
 simpleMarkerSymbol.Outline = true;
 simpleMarkerSymbol.OutlineColor = outlineColor;

FIGURE 11-19

c11.indd 348c11.indd 348 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Elements ❘ 349

 simpleMarkerSymbol.Size = 12;
 simpleMarkerSymbol.Style = esriSimpleMarkerStyle.esriSMSDiamond;

 //define the Element
 IElement element = null;
 IMarkerElement markerElement = new MarkerElementClass();
 markerElement.Symbol = simpleMarkerSymbol;
 element = (IElement)markerElement;
 IPoint point = new PointClass();
 //coordinates are in Map unit
 point.X = 94; point.Y = -24;
 element.Geometry = point;

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IGraphicsContainer gContiner = mxdoc.FocusMap as IGraphicsContainer;
 gContiner.AddElement(element, 0);

 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGraphics,
 null, null);

Instead of hard-coding the coordinates of the element, it is a good idea to let users clicks determine
the coordinates. In other words, this code puts the element wherever she or he clicks. This is where the
Tool add-in comes into play. In the next Try It Out, you explore this kind of add-in component.

TRY IT OUT Tool for Adding GraphicElements (ToolAddingGraphic.zip)

 1. Add a new add-in component to the CreatingOutputs solution and name the component
AddGraphicTool. Select Tool as the type of add-in, set the confi guration of the tool as shown in
Figure 11-20, and click Finish.

FIGURE 11-20

c11.indd 349c11.indd 349 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

350 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 2. Enter the following using directives at the top of the AddGraphicTool.cs fi le’s code window:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Display;
using ESRI.ArcGIS.Carto;

 3. You are going to write the code for handling the OnMouseDown event. In other words, you want
your code to be executed when a user clicks somewhere in the main window of the software
application. Because all the events and their handlers are defi ned in the base class of all tools
(ESRI.ArcGIS.Desktop.AddIns.Tool), you have to override the necessary handlers. So write
the following code in the AddGraphicTool.cs fi le
inside the defi nition for the AddGraphicTool class
and outside of any method:

protected override

As soon as you type these two keywords and press
the spacebar, you will see the list of all available han-
dlers. Find OnMouseDown in the list as shown in
Figure 11-21 and press Enter.

 4. Add the following code to the OnMouseDown() event handler:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IGraphicsContainer gContiner = mxdoc.FocusMap as IGraphicsContainer;

 IDisplayTransformation dispTransformation =
 mxdoc.ActiveView.ScreenDisplay.DisplayTransformation;
 IPoint point = dispTransformation.ToMapPoint(arg.X, arg.Y);

 IRgbColor color = new RgbColorClass();
 color.Red = 255; color.Blue = 0; color.Green = 0;

 IRgbColor outlineColor = new RgbColorClass();
 outlineColor.Red = 0; outlineColor.Blue = 255; outlineColor.Green = 0;

 ISimpleMarkerSymbol simpleMarkerSymbol = new SimpleMarkerSymbolClass();
 simpleMarkerSymbol.Color = color;
 simpleMarkerSymbol.Outline = true;
 simpleMarkerSymbol.OutlineSize = 1.5;
 simpleMarkerSymbol.OutlineColor = outlineColor;
 simpleMarkerSymbol.Size = 9;

 if (arg.Button == System.Windows.Forms.MouseButtons.Left)
 {
 simpleMarkerSymbol.Style = esriSimpleMarkerStyle.esriSMSDiamond;
 }
 else if (arg.Button == System.Windows.Forms.MouseButtons.Right)
 {
 simpleMarkerSymbol.Style = esriSimpleMarkerStyle.esriSMSSquare;

FIGURE 11-21

c11.indd 350c11.indd 350 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Elements ❘ 351

 }

 IElement element = null;
 IMarkerElement markerElement = new MarkerElementClass();
 markerElement.Symbol = simpleMarkerSymbol;
 element = (IElement)markerElement;
 element.Geometry = point;

 gContiner.AddElement(element, 0);
 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGraphics,
 null, null);

 5. Place the newly created tool on the Output toolbar by modifying the confi guration fi le.

 6. Run the code. In ArcMap, add some data and test the tool. While the Tool is selected, right-
clicking on the map results in putting square markers and left-clicking creates diamond markers
on the map.

How It Works

The event handler has an input argument that carries all the information about the event. This argu-
ment is set by ArcGIS for Desktop applications and contains information such as which button is
pressed and the location of users’ clicks. In order to put the elements on the map, you need to convert
between display units (where the user clicks in the display area of software [the application’s main
window]) and map units (where the element should be placed). The DisplayTransformation object
performs this task for you.

In addition to converting coordinates between map units and display units (device space units),
DisplayTransformation can be used to access useful information such as screen resolution and the
current spatial reference of the display. The following code can be used for getting the current screen
resolution.

IDisplayTransformation dispTransformation =
mxdoc.ActiveView.ScreenDisplay.DisplayTransformation;
double screenRes = dispTransformation.Resolution;

NOTE Map and PageLayout objects can provide access to the
DisplayTransformation object through the IActiveView interface. In other
words, IActiveView is implemented by both Map and PageLayout objects. As
you saw in the preceding example, the DisplayTransformation object of the
map converts the real-world units (map units) and display units and can report
the spatial reference of the map. Note that the DisplayTransformation object
of PageLayout does not have a spatial reference and performs translation
between display units and page units.

c11.indd 351c11.indd 351 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

352 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

Adding FrameElements

As mentioned earlier in this chapter, FrameElements can only be added to a PageLayout and
they are generally containers for other objects. MapFrames are containers of layers and each
MapFrame can be related to several MapSurroundFrame objects. A MapSurroundFrame is a
container of MapSurround objects. A MapSurround object is an object that is related to a specifi c
MapFrame, such as legend, scale bar, and north arrow. In order to display a MapSurround object
such as a north arrow in PageLayout, it must be contained in a MapSurroundFrame and be related
to a MapFrame.

With four simple steps, you can add all the necessary MapSurround objects, such as legend,
north arrow, and scale bars. As an example, write a piece of code to add a simple legend to the
PageLayout. The fi rst step is to create or obtain a reference to a MapSurround object. In this step,
you have to associate the MapSurround object with a map.

 //step 1
 ILegend legend = new LegendClass_2();
 legend.AutoAdd = true;
 legend.Title = "Legend of the Map";
 legend.Map = mxdoc.FocusMap;

MapSurround objects (such as your legend) cannot be added to a PageLayout directly, so you need a
MapSurroundFrame instance to frame them.

 //step 2
 IMapSurroundFrame MSFrame = new MapSurroundFrameClass();
 MSFrame.MapSurround = legend;

As a special kind of element, MapSurroundFrame needs to have a location. As mentioned
previously, the location of all elements is defi ned using the Geometry property of the IElement
interface.

 //step 3
 IElement MSElement = MSFrame as IElement;
 IEnvelope en = new EnvelopeClass();
 en.XMin = 1.5; en.YMin = 1.5;
 en.Width = 10; en.Width = 10;
 MSElement.Geometry = en as IGeometry;

And the fi nal step is to add the legend to the PageLayout using the IGraphicsContainer interface
and refreshing the ActiveView.

 //step 4
 IGraphicsContainer gc = mxdoc.PageLayout as IGraphicsContainer;
 gc.AddElement(MSElement, 0);
 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGraphics,
 null, null);

c11.indd 352c11.indd 352 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Elements ❘ 353

All kinds of MapSurround subclasses can be added to the PageLayout using these four steps.

In addition to creating MapSurround objects from scratch, it is possible to obtain an existing
MapSurround object. In fact, ArcGIS comes with a large number of symbols, colors, color ramps,
and elements that can be accessed using the Style Manager window, shown in Figure 11-22.
You can fi nd the Style Manager window by selecting the Style Manager item from the
Customize menu.

FIGURE 11-22

Expand the ESRI.style node in the Style Manager window to see different classes of styles, such
as North Arrows, Scale Bars, and Color Ramps. Each of these style classes contains some style
items, such as ESRI North 1. Figure 11-23 illustrates the relationship between classes in different
namespaces of ArcObjects that should be used to obtain different style classes.

c11.indd 353c11.indd 353 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

354 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

FIGURE 11-23

ArcMapUIObjectModel

EnumStyleGalleryItem

esriDisplay.IStyleGallery

MxDocument

StyleGallery

StyleGalleryItem

StyleGalleryClass

NorthArrowStyleGalleryClass ColorRampStyleGalleryClass ScalebarStyleGalleryClass

FrameworkObjectModel

esriDisplay.IStyleGalleryItem

CartoObjectModel

 Each MxDocument object is composed of at least one StyleGallery, which is accessible through
the StyleGallery property of the IMxDocument interface. The StyleGallery object contains
StyleGalleryClasses such as north arrows, color ramps, and scale bars. In order to access an
individual StyleGalleryItem, fi rst an enum of StyleGalleryItems should be created. Then using
the created enum, an individual StyleGalleryItem can be referenced by its name or by its order
in the specifi c StyleGalleryClass. Note that the StyleGalleryItem is not the actual item. In
order to get to the actual item (such as a north arrow), you have to use the Item property of the
referenced StyleGalleryItem.

In order to create an enum of StyleGalleryItem, the get_Items() method of StyleGallery
should be called. The following code illustrates the steps necessary to reference an individual north
arrow called ESRI North 12:

IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
IStyleGallery styleGallery = mxdoc.StyleGallery;
 IEnumStyleGalleryItem enumStyleGallery = styleGallery.get_Items
("NorthArrows", "ESRI.STYLE", "Default");

c11.indd 354c11.indd 354 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Elements ❘ 355

 IStyleGalleryItem northArrowStyle = enumStyleGallery.Next();
 while (northArrowStyle != null)
 {
 if (northArrowStyle.Name == "ESRI North 12")
 {
 break;
 }
 northArrowStyle = enumStyleGallery.Next();
 }
 INorthArrow northArrow = northArrowStyle.Item as INorthArrow;

In addition to referencing an item by name, it is possible to reference an individual
StyleGalleryItem by its order in the parent StyleGalleryClass. The following code references
the fi fth scale bar in the Scale Bars StyleGalleryClass:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IStyleGallery styleGallery = mxdoc.StyleGallery;
 IEnumStyleGalleryItem enumStyleGallery =
 styleGallery.get_Items("Scale Bars", "ESRI.Style", "");

 IStyleGalleryItem scalebarStyle = enumStyleGallery.Next();
 for (int i = 0; i < 5; i++)
 {
 scalebarStyle = enumStyleGallery.Next();
 }
 IScaleBar scalebar = scalebarStyle.Item as IScaleBar;

NOTE The Item property of StyleGalleryItem is of type IUnknown. Since the
StyleGallery contains many diff erent types of objects (IColor, IColorRamp,
ISymbol, and IScaleBar), it should provide a generic way to return a specifi c item
without knowing its type. This is why the Item property is IUnknown. IUnknown is
the ultimate interface of all COM interfaces, and as a result, it is implemented by
all COM objects.

In the last Try It Out of this chapter, you develop two tools to add a north arrow and scale bar to
the PageLayout, then put these two tools on a tool palette.

TRY IT OUT Tool for Adding GraphicElements (LayoutTools.zip)

 1. Add a new add-in component to the CreatingOutputs solution and name the component
AddNorthArrowTool. Select Tool as the type of add-in, set the confi guration of the tool as shown
in Figure 11-24, and click Finish.

c11.indd 355c11.indd 355 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

356 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 2. Enter the following using directives at the top of the AddNorthArrowTool.cs fi le’s code window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Display;

 3. Create stub code for the OnMouseDown() event handler by typing the following keywords outside
any method but inside AddNorthArrowTool.cs:

protected override

As soon as you type the above two keywords and press the spacebar, you will see the list of all
available handlers. Find OnMouseDown in the list and press Enter:

 4. Add the following code to the OnMouseDown() event handler.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.PageLayout as IActiveView;
 IGraphicsContainer gc = mxdoc.PageLayout as IGraphicsContainer;

 IGraphicsContainer graphicsContainer = mxdoc.PageLayout as
 IGraphicsContainer;
 graphicsContainer.Reset();

 //only one North Arrow should be in a Layout
 IElement element = graphicsContainer.Next();

FIGURE 11-24

c11.indd 356c11.indd 356 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Elements ❘ 357

 while (element != null)
 {
 if (element is IMapSurroundFrame)
 {
 IMapSurroundFrame MSF = element as IMapSurroundFrame;
 if (MSF.MapSurround is INorthArrow)
 {
 gc.DeleteElement(element);
 }
 }
 element = graphicsContainer.Next();
 }

 IPoint point = activeView.ScreenDisplay.DisplayTransformation.
 ToMapPoint(arg.X, arg.Y);
 IEnvelope envelope = new EnvelopeClass();

 envelope.XMin = point.X;
 envelope.YMin = point.Y;
 envelope.Width = 5;
 envelope.Height = 5;

 IStyleGallery styleGallery = mxdoc.StyleGallery;
 IEnumStyleGalleryItem enumStyleGallery = styleGallery.get_Items("North
 Arrows", "ESRI.STYLE", "Default");

 IStyleGalleryItem northArrowStyle = enumStyleGallery.Next();
 while (northArrowStyle != null)
 {
 if (northArrowStyle.Name == "ESRI North 3")
 {
 break;
 }
 northArrowStyle = enumStyleGallery.Next();
 }

 INorthArrow northArrow = northArrowStyle.Item as INorthArrow;
 northArrow.Map = mxdoc.FocusMap;

 IMapSurroundFrame pMSFrame = new MapSurroundFrameClass();
 pMSFrame.MapSurround = northArrow;
 IElement MSElement = pMSFrame as IElement;

 MSElement.Geometry = envelope as IGeometry;

 gc.AddElement(MSElement, 0);
 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGraphics,
 null, null);

 5. Add another add-in component to your project. Name it AddScalebarTool and provide the
information as displayed in Figure 11-25.

c11.indd 357c11.indd 357 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

358 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 6. Enter the following using directives at the top of the AddScalebarTool.cs fi le’s code window:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Display;

 7. Create stub code for the OnMouseDown() event handler and enter the following code inside the
event handler:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IActiveView activeView = mxdoc.PageLayout as IActiveView;
 IGraphicsContainer gc = mxdoc.PageLayout as IGraphicsContainer;

 IGraphicsContainer graphicsContainer = mxdoc.PageLayout as
 IGraphicsContainer;
 graphicsContainer.Reset();

 //only one scale bar should be in a Layout
 IElement element = graphicsContainer.Next();
 while (element != null)
 {

FIGURE 11-25

c11.indd 358c11.indd 358 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Elements ❘ 359

 if (element is IMapSurroundFrame)
 {
 IMapSurroundFrame MSF = element as IMapSurroundFrame;
 if (MSF.MapSurround is IScaleBar)
 {
 gc.DeleteElement(element);
 }
 }
 element = graphicsContainer.Next();
 }

 IPoint point = activeView.ScreenDisplay.DisplayTransformation.
 ToMapPoint(arg.X, arg.Y);
 IEnvelope envelope = new EnvelopeClass();

 envelope.XMin = point.X;
 envelope.YMin = point.Y;
 envelope.Width = 5;
 envelope.Height = 5;

 IStyleGallery styleGallery = mxdoc.StyleGallery;
 IEnumStyleGalleryItem enumStyleGallery =
 styleGallery.get_Items("Scale Bars", "ESRI.Style", "");

 IStyleGalleryItem scalebarStyle = enumStyleGallery.Next();
 for (int i = 0; i < 4; i++)
 {
 scalebarStyle = enumStyleGallery.Next();
 }

 IScaleBar scalebar = scalebarStyle.Item as IScaleBar;
 scalebar.Map = mxdoc.FocusMap;

 IMapSurroundFrame pMSFrame = new MapSurroundFrameClass();
 pMSFrame.MapSurround = scalebar;
 IElement MSElement = pMSFrame as IElement;

 MSElement.Geometry = envelope as IGeometry;

 gc.AddElement(MSElement, 0);
 mxdoc.ActiveView.PartialRefresh(esriViewDrawPhase.esriViewGraphics,
 null, null);

 8. To add a Tool Palette to your project, add a new add-in command container and name it
LayoutToolPalette. Select Tool Palette as the type of Command Bar and add AddScalebarTool and
AddNorthArrowTool to the tool palette, as shown in Figure 11-26.

c11.indd 359c11.indd 359 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

360 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 9. Open the confi guration fi le and notice that a new ToolPalette XML element has been added, as
the following XML fragment shows:

<ToolPalette id="CreatingOutputs_LayoutToolPalette" caption="LayoutToolPalette"
category="ArcGISBook" isMenuStyle="false" columns="0">
 <Items>
 <Item refID="CreatingOutputs_AddScalebarTool" />
 <Tool refID="CreatingOutputs_AddNorthArrowTool" separator="true" />
 </Items>
 </ToolPalette>

The process of adding a tool palette to an existing toolbar is similar to adding a button or a
tool to a toolbar. All you need to do is to insert another Item XML element as a child of the
Toolbar element and then set the value of the refID attribute as the ID of the ToolPalette
element.

 10. Run the code, go to Layout view, and test the functionality of the two newly created tools by left-
clicking in the Layout view.

How It Works

In this example, you used a tool palette and two tools to place a scale bar and north arrow interac-
tively. Generally, a tool palette is a container for tools and usually is placed on a toolbar. As is true for
a toolbar, a tool palette is just an XML fragment. It is defi ned in a confi guration fi le along with other
tools and buttons and it can contain one or more tools (only tools). The order of tools and number of
columns in the tool palette can be easily set through modifying the confi guration fi le. You also learned
that it is possible to control the number of specifi c MapSurround objects.

FIGURE 11-26

c11.indd 360c11.indd 360 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 361

SUMMARY

As mentioned in Chapter 10, making maps is one of the primary tasks of a GIS professional or GIS
user. Making fl exible labels and displaying them on the map or PageLayout at appropriate scales
results in more intuitive and easier-to-understand maps. In addition, MapSurround elements such as
legend and north arrow are dynamically related to data in Data Frames.

As you have seen in this chapter, it was an easy task to use an item of the extensive set of symbols,
colors, and map elements that are shipped with ArcGIS. As a developer, you can access these items
through the StyleGallery CoClass. In this chapter, you learned how to get a MapSurround element
from the StyleGallery. It is also a simple task to get another type of item such as ColorRamp from
the StyleGallery. This way there is no need to create the needed object from the ground up.

EXERCISES

 1. What is the major diff erence between GraphicElement and FrameElement?

 2. What softcopy format can be used to export an ActiveView including attribute data?

 3. How can you determine the screen resolution?

You will fi nd the answers to these exercises in this book’s appendix.

c11.indd 361c11.indd 361 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

362 ❘ CHAPTER 11 LABELING, EXPORTING ACTIVEVIEW, AND WORKING WITH ELEMENTS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Using the

Maplex

Label

Engine

The map (Data Frame) uses a single labeling engine for all FeatureLayers. There

are two possible labeling engines in ArcGIS for Desktop applications. The default

labeling engine is called the Standard Label Engine. In addition to the Standard

Label Engine, it is also possible to take advantage of a more fl exible labeling engine,

the Esri Maplex Label Engine.

In order to use the Esri Maplex Label Engine, you need to change the

AnnotationEngine property of the Map object. In this case, the default labeling

engine, which is of type AnnotateMap, should be changed to an instance of

the MaplexAnnotateMap CoClass. In addition, you need to instantiate from an

appropriate AnnotateLabelProperties subclass, as shown in the following code:

IAnnotateMap2 annMap = new MaplexAnnotateMapClass();
map.AnnotationEngine = annMap as IAnnotateMap;
IAnnotateLayerProperties annotateLP = new
MaplexLabelEngineLayerPropertiesClass();

Diff erence

between

Envelope

and

tagRECT

Both Envelope and tagRECT represent a box. But Envelope is a class while

tagRECT is a structure. Classes are reference types and reside in the managed heap

in memory; structures are value types and are created in the stack part of memory.

There is another important diff erence between the tagRECT structure and the

Envelope class: The direction of the y axis in the Envelope coordinate system is the

opposite of the y axis of the tagRECT coordinate system. The origin of Envelope’s

coordinate system is at the lower-left point, while the origin of the tagRECT

coordinate system is the upper-left point of the display.

Real-

world,

display,

and page

units

IDisplayTransformation is the primary interface for performing translation

between real-world (map) display, and page units. The Map and PageLayout

objects can access the DisplayTransformation object through the

IActiveView interface. IActiveView is implemented by both Map and

PageLayout objects.

The IDisplayTransformation object of Map converts the real-world units (map

units) and display units. In contrast, the IDisplayTransformation object of

PageLayout translates between display units and page units.

In summary, the user clicks on the display and based on the type of ActiveView (Map

or PageLayout), IDisplayTransformation is able to convert coordinates of the

clicked point to Map or PageLayout units, respectively.

c11.indd 362c11.indd 362 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 363

Getting an

item from

the style

gallery

The StyleGallery object contains StyleGalleryClasses such as North Arrows,

ColorRamps, and ScaleBars. In order to access an individual style gallery item,

fi rst an enum of StyleGalleryItems should be created. Then using the created

enum, an individual StyleGalleryItem can be referenced by its name or by its

order in the specifi c StyleGalleryClass. As the fi nal step, the Item property of

StyleGalleryItem returns the actual object, as shown in the following code:

 IStyleGallery styleGallery = mxdoc.StyleGallery;
 IEnumStyleGalleryItem enumStyleGallery =
 styleGallery.get_Items("North Arrows", "ESRI.STYLE",
 "Default");

 IStyleGalleryItem northArrowStyle =
 enumStyleGallery.Next();
 while (northArrowStyle != null)
 {
 if (northArrowStyle.Name == "ESRI North 12")
 {
 break;
 }
 northArrowStyle = enumStyleGallery.Next();
 }
 INorthArrow northArrow = northArrowStyle.Item as
 INorthArrow;

c11.indd 363c11.indd 363 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c11.indd 364c11.indd 364 25/02/13 12:20 PM25/02/13 12:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geoprocessing with
Tools and Models

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Getting to know the geoprocessing framework

 ➤ Discovering system and custom tools

 ➤ Running system and custom tools

 ➤ Opening a tool’s dialog box

 ➤ Geoprocessing in the background

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter12 folder and
is individually named according to the names throughout the chapter.

Geoprocessing is the bread and butter of any GIS professional. ArcObjects provides a
vast amount of geoprocessing tools that can be chained together using the ModelBuilder
window or Python scripts. These geoprocessing tools are accessible to developers using
the geoprocessing framework. This chapter provides an introduction to geoprocessing in
ArcObjects.

ARCOBJECTS AND THE GEOPROCESSING FRAMEWORK

Geoprocessing is a core and indispensable part of most GIS software. Users of ArcGIS perform
geoprocessing using the geoprocessing tools in the ArcToolbox. In the very fi rst versions of
ArcGIS, the ArcToolbox was a separate application. In recent versions, it is fully integrated

12

c12.indd 365c12.indd 365 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

366 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

with core ArcGIS for Desktop applications as the ArcToolbox window. The ArcToolbox contains
a multitude of tools that can be used to perform both simple and complicated GIS workfl ows.

Users of ArcGIS for Desktop applications can perform GIS workfl ows by chaining tools manually
or by designing models in the ModelBuilder window or by writing scripts in Python. Behind the
scenes, the geoprocessing framework provides tools, the ModelBuilder, and integration with Python
to automate tasks. The easiest way to create and run a GIS workfl ow is to use the ModelBuilder,
but Python as an advanced programming language is more powerful and provides more options to
execute and publish scripts. The ModelBuilder is a visual designer for designing all kinds of GIS
workfl ows using existing tools in ArcToolbox or custom tools.

In Chapter 9 you learn that developers of ArcObjects can use ArcObjects libraries to write low-level
code to perform geoprocessing tasks. Starting at version 9.2, all tools in ArcToolbox and created
models in ModelBuilder can be invoked in code without writing low-level ArcObjects code.

As is true for all parts and components of ArcGIS for Desktop applications, the geoprocessing
framework is completely written and developed using low-level ArcObjects code. ArcObjects can
be used by developers to extend the functionality of existing applications. On the other hand,
geoprocessing is a framework to automate tasks and to simplify GIS workfl ows.

ArcObjects provides low-level interfaces of types to developers and geoprocessing let developers run
the tools, models, and scripts at a higher level of abstraction. In ArcObjects, developers have to set
required members and call methods of various types, while in the geoprocessing framework all a
developer needs to run a tool or model is the tool’s or model’s parameters.

Consider a black box that is able to perform a single GIS function, such as buffering. When you use
ArcObjects, you are inside the black box; on the other hand, when using geoprocessing, you are
standing outside of the black box and you don’t see what is going on inside the box. The task will
be done in both cases, but when using ArcObjects you see and feel a lot more than what can be seen
and felt when using geoprocessing. In summary, when using low-level ArcObjects code to perform
geoprocessing, you get a higher level of fl exibility in terms of error handling capability and control
on the running code and you get faster code execution. When using the geoprocessing framework,
you can design models quicker, and as a result, it takes less time to write the code.

To sum up, ArcObjects and the geoprocessing framework complement each other. In most cases,
they are used together to get the best of both worlds and extend existing applications or create new
applications.

RUNNING GEOPROCESSING TOOLS

A large number of prebuilt geoprocessing tools come with ArcGIS for Desktop applications. These
tools are called system tools.

NOTE In this chapter, geoprocessing tools are often referred to simply as tools.

c12.indd 366c12.indd 366 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 367

As mentioned in the preceding section, in addition to system tools, users of ArcGIS can utilize the
ModelBuilder or Python to design and create their own custom tools.

Both kinds of tools can be executed using a geoprocessor object. But before using a geoprocessor
object, you must know the name of the tool, the tool’s input and output parameters, and any other
required settings. This kind of information can be accessed using a tool’s reference page. The best
way to access a tool’s reference page is to browse for it in ArcGIS Desktop Help. (All tools have such
a reference page.)

To get familiar with tool reference pages, take a look at the reference page for the Thiessen
Polygons tool. Click on ArcGIS Desktop Help in the Help menu in ArcMap or ArcCatalog. Find the
Create Thiessen Polygons tool’s reference page by searching for “thiessen polygon” in the Search tab
of ArcGIS 10 Help. Figure 12-1 shows the reference page of the Create Thiessen Polygons tool.

FIGURE 12-1

This page contains all the information needed to run and execute the tool. The license level is
specifi ed at the bottom of the page and in ArcGIS 10.1, at the top of the page. It is important to
know which tools are available for a certain license level. The most important part of the tool’s
reference page is the Syntax part and its following table, which indicate all of the tool’s parameters
as well as the parameters’ data types. The Code Sample part of the tool’s reference page shows an
example of using the tool in the Python scripting language. It is also possible to access the same
information online.

In addition, if you right-click on a tool in ArcToolbox and select Item Description… from the
context menu, some useful information about using the tool can be found.

c12.indd 367c12.indd 367 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

368 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

Running system or custom tools requires three steps, as follows:

 1. Create a geoprocessor object and set its properties.

 2. Set the appropriate values for the tool’s parameters.

 3. Execute a tool using the geoprocessor object’s Execute() method.

In order to create a geoprocessor object, the IGeoProcessor2 interface can be used. This interface
is defi ned in the geoprocessing library of ArcObjects and is implemented by the GeoProcessor
CoClass.

 IGeoProcessor2 gp = new GeoProcessorClass();
 //add the result of geoprocessing as a new layer to Map
 gp.AddOutputsToMap = true;
 //if output of geoprocessing exists before the execution of tool
 //it will be overwritten
 gp.OverwriteOutput = true;

Assume that you want to create Thiessen polygons for the cities FeatureClass to create proximal
zones for all cities. The proximal zones represent full areas where any location inside the zone is
closer to its associated city than any other city. Based on the Create Thiessen Polygons reference
page, you have to provide at least an input point FeatureLayer and the path to the output
FeatureClass.

In order to create and set each parameter, the IVariantArray interface of the System library must
be used.

 IVariantArray parameters = new VarArrayClass();

Each parameter has to be added to the IVariantArray interface in the exact order that is specifi ed
on the tool’s reference page.

 //in_features
 parameters.Add(@"D:\DataFolder\fileGDB.gdb\cities");
 //out_feature_class
 parameters.Add(@"D:\DataFolder\fileGDB.gdb\citiesThiessen");
 //fields_to_copy(Optional)
 parameters.Add("ALL");

As it is illustrated on the Create Thiessen Polygons reference page, the third parameter is optional.
You can simply not add any value to IVariantArray or, as shown in the preceding code, you can
provide an appropriate value for the optional parameter. You can skip the optional parameter
using an empty string as input to IVariantArray’s Add() method. For example, look at the
reference page of the Buffer tool; you can see that three of the seven available parameters are
mandatory. The following code demonstrates how to skip the fourth parameter and specify the
fi fth parameter:

c12.indd 368c12.indd 368 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 369

 //1-in_features
 parameters.Add(@"D:\test.gdb\cities");
 //2-out_feature_class
 parameters.Add(@"D:\test.gdb\citiesBuffer");
 //3-buffer_distance_or_field
 parameters.Add("50 kilometers");
 //4-line_side(Optional)
 parameters.Add("");
 //5-line_end_type(Optional)
 parameters.Add("ROUND");
 //6 &7 there is no need to provide empty string
 //for the rest of parameters since you don't want to set them

After setting all the required parameters, all you need to run a tool is to call the Execute() method
of the geoprocessor object. The Execute() method solicits the name of the tool and its parameters.

 gp.Execute("CreateThiessenPolygons_analysis", parameters, null);

The following code shows the complete code for this example. In order to run the code, you need to
add references to the Geoprocessing and System libraries of ArcObjects:

 IGeoProcessor2 gp = new GeoProcessorClass();
 //add the result of geoprocessing as a new layer to Map
 gp.AddOutputsToMap = true;
 //if output of geoprocessing exists before the execution of tool
 //it will be overwritten
 gp.OverwriteOutput = true;

 IVariantArray parameters = new VarArrayClass();
 //in_features
 parameters.Add(@"D:\DataFolder\fileGDB.gdb\cities");
 //out_feature_class
 parameters.Add(@"D:\DataFolder\fileGDB.gdb\citiesThiessen");
 //fields_to_copy(Optional)
 parameters.Add("ALL");
 //or parameters.Add("");
 gp.Execute("CreateThiessenPolygons_analysis", parameters, null);

The Geoprocessing library of ArcObjects is accessible through the ESRI.ArcGIS.Geoprocessing
namespace. This library contains a few hundred types which can be used to run and manage tools
and GIS workfl ows. You learned earlier in this section that IGeoProcessor2 is the main interface of
this library and the easiest way to run a geoprocessing tool is to call its Execute() method.

However, using IGeoProcessor2 is not the only approach to run a geoprocessing tool or model.
There are some managed assemblies created by Esri to performing geoprocessing in a managed
way. A managed way means there is a native .NET assembly (the Geoprocessor assembly) that is
a wrapper for some types in the Geoprocessing library of ArcObjects, and there are other .NET
assemblies for each system toolbox.

These native .NET assemblies provide an even easier way to run a system tool. In general, the
procedure for running a tool using the Geoprocessor-managed assembly is the same as running a tool

c12.indd 369c12.indd 369 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

370 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

using the Geoprocessing library. You need to add a reference to the Geoprocessor assembly as well
as the toolbox assembly that contains the tool (for example, ESRI.ArcGIS.AnalysisTools since the
Analysis toolbox contains the Create Thiessen Polygons tool). Then you can initialize the objects as
the normal .NET objects. The following code snippet is equivalent to the preceding example:

 Geoprocessor gp = new Geoprocessor();
 gp.AddOutputsToMap = true;
 gp.OverwriteOutput = true;

 CreateThiessenPolygons createThiessen = new CreateThiessenPolygons();
 //in_features
 createThiessen.in_features = @"D:\DataFolder\fileGDB.gdb\cities";
 //fields_to_copy(Optional)
 createThiessen.fields_to_copy = "ALL";
 //out_feature_class
 createThiessen.out_feature_class = @"D:\DataFolder\fileGDB.gdb\citiesThiessen";

 gp.Execute(createThiessen, null);

As illustrated in this code, the parameters of a tool are available as members of the tool’s instance
and there is no need to provide the parameters in any specifi c order.

NOTE Since Geoprocessor is a true .NET class, it has a parameterized con-
structor. In other words, you can use the following line of code to instantiate a
CreateThiessenPolygons instance.

CreateThiessenPolygons createTP = new
CreateThiessenPolygons("Input", "Output");

So what approach should be used? In short, both methods are two sides of the same coin. Both
approaches provide a high-level execution of tools. In other words, they provide a fast and easy way
to create sophisticated GIS workfl ows.

Specifi cally in the case of the Geoprocessing library’s IGeoProcessor2 interface, the order of
parameters must be known before the execution and there is no IntelliSense facility in Visual Studio.
On the other hand, the Geoprocessor assembly just provides a handful of members that are needed
for execution of a tool. For example, when using the Geoprocessor-managed assembly, if you need
to get messages from a tool and get information about the output of a successful execution of a tool,
you have to resort to the Geoprocessing library. In the next Try It Out, you explore more features of
the geoprocessing framework.

TRY IT OUT Multiple Ring Buff er Geoprocessing (MultipleRingBuff er.zip)

 1. Create a new ArcMap Add-in project. Name the solution GeoprocessingProject. In the Welcome
page of the Add-Ins Wizard, provide the necessary information and then click the Next button.
Select Button as the type of add-in, provide the information shown in Figure 12-2, and then
click Finish.

c12.indd 370c12.indd 370 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 371

 2. Add ESRI.ArcGIS.Carto, ESRI.ArcGIS.Geoprocessing, and ESRI.ArcGIS.Geodatabase references
using the Add ArcGIS Reference window, as shown in Figure 12-3.

 3. Add a reference to System.Windows.Forms assembly using the Add Reference window, as shown
in Figure 12-4.

FIGURE 12-2

FIGURE 12-3 FIGURE 12-4

c12.indd 371c12.indd 371 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

372 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

 4. Type the following using directives at the top of the MultipleRingBuffer.cs fi le’s code
window.

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geoprocessing;
using ESRI.ArcGIS.Geodatabase;
using System.Windows.Forms;

 5. Add the following code to the button’s OnClick() method:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 if (map.Layer[0] == null)
 { return; }

 ILayer layer = map.Layer[0];
 IDataset dataset = layer as IDataset;

 IGeoProcessor2 gp = new GeoProcessorClass();
 gp.AddOutputsToMap = true;
 gp.OverwriteOutput = true;

 //syntax of the tool from tool's reference page
 //MultipleRingBuffer_analysis (Input_Features, Output_Feature_class, Distances,
 //{Buffer_Unit}, {Field_Name}, {Dissolve_Option}, {Outside_Polygons_Only})

 IVariantArray parameters = new VarArrayClass();
 //Input_Features
 parameters.Add(layer);
 //Output_Feature_class
 parameters.Add(dataset.BrowseName + "MRB");
 //you have to use ; to separate the distances (multivalue)
 parameters.Add("10;50;100");
 //{Buffer_Unit}
 parameters.Add("kilometers");
 //{Field_Name}
 parameters.Add("");
 //{Dissolve_Option}
 parameters.Add("ALL");

 gp.Execute("MultipleRingBuffer_analysis", parameters, null);

 object severity = null;
 MessageBox.Show(gp.GetMessages(ref severity));

 6. Add a new add-in command container (toolbar) and name it GeoprocessingToolbar. Select
Toolbar as the type of Add-in Command Bars and add the reference to the button, as shown in
Figure 12-5.

c12.indd 372c12.indd 372 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 373

 7. Run the code, add some layers to your map, and press the button. You should see multiple ring
buffers around the features after a few seconds and a message box that reports messages about
the tool’s execution, as shown in Figure 12-6.

FIGURE 12-5

FIGURE 12-6

c12.indd 373c12.indd 373 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

374 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

How It Works

In this Try It Out, you used an object instead of a hard-coded path as an input to the tool. In real-
ity, if a parameter’s data type is specifi ed as Feature Layer in the tool’s reference page, you can pro-
vide any object of one of types IFeatureClass, ILayer, IName, and IDataset. IGeoProcessor2’s
GetMessages() method returns all messages generated by the tool’s execution.

Calling the Execute() method resulted in execution of the tool in a foreground process. This means
during execution of the tool, any user interaction with the ArcGIS for Desktop application’s user inter-
face will be disabled and the code after the geoprocessor.Execute() method cannot be executed
until the tool’s execution completed successfully or fails. This is not acceptable behavior for geopro-
cessing in some situations. That is why Esri provides the capability to run geoprocessing tools in a
background process since version 10. If you execute the Multiple Ring Buffer tool in the ArcToolbox
window, you will notice that while the tool is executing you can interact with the user interface and
query data for instance.

NOTE By default, background geoprocessing is enabled, but you can change
this setting using the Geoprocessing Options window, shown in FIgure 12-7,
which is accessible through the Geoprocessing menu.

FIGURE 12-7

Another point worth mentioning is that in some situations an ArcMap session
crashes after running the Multiple Ring Buff er tool. If your ArcMap crashed after
pressing the MultipleRingBuff er button, it is good idea to use another system tool
such as buff er.

c12.indd 374c12.indd 374 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 375

You learn how to perform geoprocessing in a background process later in this chapter. The following
code implements the same logic using the Geoprocessor-managed assembly. To run this code, you have
to add references to the ESRI.ArcGIS.Geoprocessor and ESRI.ArcGIS.AnalysisTools assemblies.
Note that in order to add these references, you have to use the Add Reference command instead of the
Add ArcGIS Reference command in Solution Explorer.

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 if (map.Layer[0] == null)
 { return; }

 ILayer layer = map.Layer[0];
 IDataset dataset = layer as IDataset;

 Geoprocessor gp = new Geoprocessor();
 gp.AddOutputsToMap = true;
 gp.OverwriteOutput = true;

 ESRI.ArcGIS.AnalysisTools.
 MultipleRingBuffer multipleRB = new ESRI.ArcGIS.AnalysisTools.
 MultipleRingBuffer();
 multipleRB.Buffer_Unit = "Kilometers";
 multipleRB.Dissolve_Option = "ALL";
 multipleRB.Distances = "10;50;100";
 multipleRB.Input_Features = layer;
 multipleRB.Output_Feature_class = dataset.BrowseName +
 "MRB";
 gp.Execute(multipleRB, null);

 object severity = null;
 MessageBox.Show(gp.GetMessages(ref severity));

Remember to put the following using directives at top of the code window if you want to test the pre-
ceding code:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geoprocessing;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.Geoprocessor;
using ESRI.ArcGIS.AnalysisTools;

Running Custom Tools

Custom tools can be created using ModelBuilder or Python scripts. Usually, a custom tool is a chain of
system tools in which output of a system tool is an input for another system tool. In addition, a custom
tool or model can itself be used in another model. The level of fl exibility provided by the geoprocessing
framework provides countless opportunities for automating the daily business of a GIS user. As an
ArcGIS developer, you can run custom tools in code in the same way that you call the system tools.
The only difference is that you have to add the physical path of the toolbox to the geoprocessor object.

c12.indd 375c12.indd 375 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

376 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

In the next Try It Out, you fi rst create a simple custom model and then use a geoprocessor object to
run it in a foreground process.

TRY IT OUT Creating and Running Custom Model (RunningCustomModel.zip)

 1. Run ArcCatalog or ArcMap and right-click a folder connection such as D:\ in the Catalog tree.
Select the Toolbox item from the New submenu to create a new toolbox, as shown in Figure 12-8.

 2. Name the new toolbox testToolbox. Right-click the testToolbox and, as shown in Figure 12-9,
select Model from the New submenu to open the ModelBuilder window.

FIGURE 12-8 FIGURE 12-9

 3. You are going to create a simple model that contains three system tools. The purpose of the
model is to select a subset of features of the input FeatureLayer and generate a KMZ fi le for those
features. In this model, the subset of features of the input FeatureLayer falls within 20 kilometers
of the features of the selecting FeatureLayer. So you need the Buffer, Select Layer By Location,
and Layer To KML system tools. All these tools are supported by all license levels of ArcGIS.

 4. From the ArcToolbox window, click on the Buffer tool, drag it to the ModelBuilder window, and
then drop it. Two icons for Buffer tools will be displayed. Right-click on the Buffer; from the
context menu, select Make Variable ➪ From Parameter ➪ Input Features, as shown in
Figure 12-10.

c12.indd 376c12.indd 376 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 377

Next, right-click on the Input Features oval and select the Model Parameter option. Making a
model’s variable a Model Parameter lets users of the model set its value when running the model.
Also rename the input of the Buffer to BufferFeatures by right-clicking it and selecting the
Rename item.

 5. Double-click the Buffer tool and provide 20 Kilometers as the Linear Unit, as in Figure 12-11.
This way of providing a value for parameters is different from making them model parameters,
and it is more like hard-coding a variable.

FIGURE 12-10

FIGURE 12-11

 6. In the Data Management Tools toolbox, expand the Layers and Table Views toolset and then
drag and drop the Select Layer By Location tool to your model. Right-click on the Select Layer
By Location tool, and from the context menu, select Make Variable ➪ From Parameter ➪ Input
Feature Layer, as shown in Figure 12-12.

c12.indd 377c12.indd 377 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

378 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

Then right-click on Input Feature Layer and choose the Model Parameter option.

 7. You are going to chain two tools by providing the output of a tool as the input of another tool.
Click the connect button (the button with an icon showing two connected squares), then click the
output of the Buffer tool (Output FeatureClass), and fi nally, click the Select Layer By Location
tool to provide its input. Because the tool has two inputs, you have to specify using the output
of the Buffer tool in the Select Layer By Location tool. The output of Buffer will be used as the
selecting features for the Select Layer By Location tool. So select Selecting Features, as shown in
Figure 12-13.

FIGURE 12-12

FIGURE 12-13

 8. From Conversion Tools, expand the To KML toolset and drag and drop the Layer To KML tool
to your model. Rename the output of the Layer To KML tool to Output KMZ File and make it
a model parameter, as shown in Figure 12-14. Then double-click the Layer To KML tool and
provide 2000000 as the Layer Output Scale.

c12.indd 378c12.indd 378 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 379

 9. Provide the output of Select Layer By Location as layer input to the Layer To KML tool using the
connect button. (See Figure 12-15.)

FIGURE 12-14

FIGURE 12-15

c12.indd 379c12.indd 379 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

380 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

 10. Select Model Properties from the Model Menu, provide descriptive text in the Name and Label
textboxes, as shown in Figure 12-16. Then click the OK button, and fi nally, save and close it.

FIGURE 12-16

FIGURE 12-17

 11. Test the model by double-clicking it in the Catalog tree. Double-clicking the model opens the
window of the BufferSelectKML custom tool, as shown in Figure 12-17. Notice that its window is
quite similar to the window of system tools.

c12.indd 380c12.indd 380 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 381

 12. Provide input parameters for the tool. You can use the us_rivers or intrstat FeatureClasses as
the BufferFeatures parameter and cities as the Input Feature Layer. Because you need to provide
a FeatureLayer for this parameter, add a feature class to the map to create an in-memory layer
or use the saved FeatureLayer and then use it. You have to provide a path for the output KMZ
fi le. After setting all the input parameters, click the OK button to run the custom tool, shown in
Figure 12-18.

FIGURE 12-18

During the execution of a custom tool, a progress bar
reports the status of running of the model. Also, as
shown in Figure 12-19, you can see useful information
about the execution of system tools as well as custom
tools in the Results window.

 13. If the custom tool works properly, you can start writing
code to use it. If the tool does not work properly, go
back to Step 1 and try to solve the issue. Open the
GeoprocessingProject solution and add an add-in
component to your project. Name it UsingCustomTool and provide the confi guration for the
button, as shown in Figure 12-20, then click Finish.

FIGURE 12-19

c12.indd 381c12.indd 381 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

382 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

 14. Add the following using directives at the top of the UsingCustomTool.cs fi le:

using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geoprocessing;
using ESRI.ArcGIS.Geodatabase;
using System.Windows.Forms;

 15. Enter the following code in the UsingCustomTool class’s OnClick() method:

 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;

 IGeoProcessor2 gp = new GeoProcessorClass();
 gp.AddOutputsToMap = true;
 gp.OverwriteOutput = true;

 if (map.LayerCount < 2)
 { return; }

 gp.AddToolbox(@"D:\testToolbox.tbx");

 //syntax of the custom tool
 //BufferSelectKML (BufferFeatures, Input_Feature_Layer, Output_KMZ_File)
 IVariantArray parameters = new VarArrayClass();
 //BufferFeatures (for example us_rivers)
 parameters.Add(map.Layer[1]);

FIGURE 12-20

c12.indd 382c12.indd 382 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Running Geoprocessing Tools ❘ 383

 //Input_Feature_Layer (for example cities)
 parameters.Add(map.Layer[0]);

 //Output_KMZ_File
 parameters.Add(@"D:\selectedCities.kmz");

 //executing by Name of custom tool
 gp.Execute("BufferSelectKML", parameters, null);

 object severity = null;
 MessageBox.Show(gp.GetMessages(ref severity));

 16. Add the newly created button to the GeoprocessingToolbar by modifying the confi guration fi le
and then test it. Add at least two layers to your map and run the code. The custom model uses the
fi rst layer in the Table Of Contents window to perform buffering and the second layer for Select
By Location. If you test the code for the cities and us_rivers FeatureClasses, you will get the result
shown in Figure 12-21 in Google Earth.

FIGURE 12-21

How It Works

In this example, you created a simple model in ModelBuilder and then called the model in code. As
shown in Figure 12-22, the syntax for calling the model can be found by right-clicking the tool in the
Catalog tree and selecting the Item Description item.

c12.indd 383c12.indd 383 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

384 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

As mentioned earlier, the name of the tool and the order and data type of all parameters are important.
A common mistake made when running custom tools in code is using the model’s label instead of the
custom tool’s name. In this case, the standard exception handling mechanism of .NET (try-catch
blocks) is not useful at all.

To run a custom tool in code, you just need the additional step of adding a toolbox to the geoprocessor
object. In other words, there is no difference in using the Geoprocessing library or a managed assembly
to run a custom model.

OPENING A TOOL’S DIALOG BOX IN CODE

Previous sections explain how to run (execute) a system or custom tool. Executing tools using their
dialog box provides a higher level of fl exibility for users. For example, in the fi rst Try It Out in this
chapter, the user is not able to change the buffer distances or buffer unit. There is a type in the
Geoprocessing library with the sole purpose of opening the dialog box of tools. This type and its
members are displayed in Figure 12-23.

FIGURE 12-22

c12.indd 384c12.indd 384 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Opening a Tool’s Dialog Box in Code ❘ 385

In order to open a tool’s dialog box using the GPToolCommandHelper CoClass, you have to fi rst set
the tool using either the SetTool() or SetToolByName() method and then simply call Invoke() or
InvokeModal(). The following code snippet illustrates the easiest way to open a tool’s dialog box:

 IGPToolCommandHelper2 commandHelper = new GPToolCommandHelperClass() as
 IGPToolCommandHelper2;
 string arcGISinstallationAddress = @"C:\Program Files (x86)\
 ArcGIS\Desktop10.1";
 string arctoolboxAddress = @"ArcToolbox\Toolboxes";
 string toolbox = "Analysis Tools.tbx";
 string completeToolboxAddress = arcGISinstallationAddress + "\\" +
 arctoolboxAddress + "\\" + toolbox;
 commandHelper.SetToolByName(completeToolboxAddress,
 "MultipleRingBuffer");
 commandHelper.Invoke(null);

NOTE In fact, there are two situations where you need the tool’s name. The
fi rst is when you want to execute the tool using a geoprocessor object, the
second when you want to open the tool’s dialog box. There is a slight diff er-
ence between a tool’s name in these situations. For example, the Multiple Ring
Buff er tool’s syntax uses MultipleRingBuffer_analysis as the name of the
tool, but as you have seen in the preceding code snippet, you have to use
MultipleRingBuffer as the name of tool.

For the fi rst situation, refer to the tool’s reference page and see the syntax of the
tool. And for second situation, simply right-click the tool and select the Properties
item from the context menu.

FIGURE 12-23

GPToolCommandHelper

Tool: IGPTool

IGPToolCommandHelper: IUnknown

Invoke(in Parameters: IArray)

SetTool(in Tool: IGPTool)

SetToolByName(in Toolbox:String,
in Tool: String)

IGPToolCommandHelper2: IGPToolCommandHelper

InvokeModal(in hWndParent:
OLE_HANDLE, in Parameters: IArray,
out pOK: Boolean, out ppMessages:
IGPMessages)

IGPToolCommandHelper

IGPToolCommandHelper2

c12.indd 385c12.indd 385 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

386 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

As you may know, a toolbox can exist in or out of all kinds of geodatabases. In other words, you
may have a geodatabase that contains geospatial data (vector, raster, and table) as well as toolboxes.

If the toolbox exists outside of a geodatabase, it can be easily accessed using its location in the fi le
system (as you saw in the preceding code snippet). But in order to access tools inside toolboxes that
reside in a geodatabase, you have to resort to one of the very special interfaces of the Workspace
Abstract Class. In the next Try It Out, you open the dialog box of a custom tool that resides in a fi le
geodatabase.

TRY IT OUT Opening a Custom Tool’s Dialog Box

 (OpeningCustomModel DialogBox.zip)

 1. Run ArcCatalog or ArcMap and right-click on a folder connection, such as D:\ in the Catalog
tree, and create a new fi le geodatabase. Name it testFileGDB.

 2. Right-click the newly created fi le geodatabase and select the Toolbox item from the New
submenu. Name the new toolbox testToolbox. Right-click the testToolbox and select Model from
the New submenu to open the ModelBuilder window.

 3. To simplify this example, drag and drop the Multiple Ring Buffer tool onto the model. Right-click
the Multiple Ring Buffer and create three parameters for Input Features, Distances, and Buffer
Unit, as shown in Figure 12-24. Then save the model, but don’t close the model window.

 4. From the Model menu, select Model Properties. Name the model simpleMultipleRingBuffer and
provide something descriptive for its label, as shown in Figure 12-25.

FIGURE 12-24 FIGURE 12-25

 5. Open the GeoprocessingProject solution and add a new add-in component to your project. Name
it OpeningDialogBox and provide the setting as shown in Figure 12-26 for the button, then click
Finish.

c12.indd 386c12.indd 386 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Opening a Tool’s Dialog Box in Code ❘ 387

 6. Add references to ESRI.ArcGIS.DataSourcesGDB and ESRI.ArcGIS.GeoprocessingUI. Note that
in order to add reference to the GeoprocessingUI assembly you must use Add Reference instead of
Add ArcGIS Reference.

 7. Enter the following using directives at the top of the OpeningDialogBox.cs fi le:

using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.Geoprocessing;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.GeoprocessingUI;

 8. Enter the following code in OnClick() method of UsingCustomTool class:

 string fileGDBAddress = @"D:\testFileGDB.gdb";
 string toolboxName = "testToolbox";
 string toolName = "simpleMultipleRingBuffer";

 IWorkspaceFactory fWF = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = fWF.OpenFromFile(fileGDBAddress,
 ArcMap.Application.hWnd);
 IToolboxWorkspace toolboxWS = ws as IToolboxWorkspace;

 //access to the toolbox
 IGPToolbox toolbox = toolboxWS.OpenToolbox(toolboxName);
 //get the tool or model
 IGPTool tool = toolbox.OpenTool(toolName);

 IGPToolCommandHelper2 commandHelper = new GPToolCommandHelperClass() as
 IGPToolCommandHelper2;
 commandHelper.SetTool(tool);
 commandHelper.Invoke(null);

FIGURE 12-26

c12.indd 387c12.indd 387 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

388 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

9. Add the newly created button to the GeoprocessingToolbar by modifying the confi guration fi le
and run your code it. When you press the button in ArcMap, the custom tool’s dialog box opens
with all the functionality of a normal ArcToolbox dialog box, such as drag and drop layers

How It Works

In this example, you used the IGPToolbox and IGPTool interfaces to get a reference to an existing tool.
Since you have a reference to a tool instead of its address, you used IGPCommandHelper’s SetTool()
method.

WORKSPACE OBJECTS

Put simply, a workspace is a container of geospatial data. A folder containing some
geospatial data, a fi le geodatabase, and an enterprise geodatabase are all examples
of workspace objects. In fact, in the ArcObjects world, all kinds of geospatial data
are contained in some sort of workspace. As you see in Chapter 7, since there are
different types of geospatial data sources and formats, there are different subclasses
of the WorkspaceFactory class.

As is true for geospatial data, all toolboxes must be stored inside workspaces — but
not all types of workspace objects can be used to save toolboxes. In this Try It Out,
since you have saved the simple custom tool in a fi le geodatabase, you need to use
FileGDBWorkspaceFactoryClass to instantiate a workspace instance.

In summary, a toolbox can be in a folder or in a geodatabase. Consult Table 12-1 to
fi nd the appropriate class to get a reference to a tool.

TABLE 12-1: Appropriate CoClasses to Instantiate Workspace Object in

Order to Open Dialog Box of a Tool

TOOLBOX SAVED IN APPROPRIATE COCLASS

Folder or fi le system ToolboxWorkspaceFactory

Personal geodatabase AccessWorkspaceFactory

File geodatabase FileGDBWorkspaceFactory

Enterprise geodatabase SdeWorkspaceFactory

You see more detail on the IWorkspace interface in Chapter 13. In this chapter,
you see how to open a tool’s dialog box that resides in a folder. ArcObjects often
provides several ways to accomplish the same task. The following code uses the
ToolboxWorkspaceFactory class to open a tool’s dialog box in the fi le system:

c12.indd 388c12.indd 388 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geoprocessing in the Background ❘ 389

GEOPROCESSING IN THE BACKGROUND

Prior to ArcGIS 10, the only available option to execute geoprocessing tools through ArcToolbox
or code was foreground geoprocessing. In other words, the tool is executed in the same process
as the main application (such as ArcMap) was executing. As mentioned earlier in this chapter, the
Execute() method of a geoprocessor object runs in the foreground. As a result, the next line of
code after geoprocessor.Execute() is not executed until the geoprocessing has fi nished its job.

Since version 10 of ArcGIS, the preferred and default method of geoprocessing is background
geoprocessing. With background geoprocessing, users of ArcGIS for Desktop applications can keep
on working within applications (such as selecting and querying geospatial data and even executing
other geoprocessing tools) while a geoprocessing tool is running in the background. In contrast to
foreground geoprocessing, there is another process that handles the background geoprocessing.

If a user wants to run a geoprocessing tool using ArcMap, background geoprocessing can be thought
of as another ArcMap session beside the main ArcMap session. In this case, the geoprocessing tool
will run in an ArcMap session on the user’s computer without opening another window for ArcMap.
This additional process (additional ArcMap session) is launched the fi rst time a tool executes in
the background and remains until the user exits the main ArcMap session. In this situation, a user
of ArcMap will notice a short delay on the fi rst execution of the tool as the background process is
started. This delay is not noticed by the user in subsequent executions of the tool.

 IGPToolCommandHelper2 commandHelper = new
 GPToolCommandHelperClass() as IGPToolCommandHelper2;
 string arcGISinstallationAddress = @"C:\Program Files
 (x86)\ArcGIS\Desktop10.1";
 string arctoolboxAddress = @"ArcToolbox\Toolboxes";
 string toolbox = "Analysis Tools.tbx";
 string completeToolboxAddress =
 arcGISinstallationAddress + "\\" + arctoolboxAddress +
 "\\" + toolbox;
 IWorkspaceFactory txWSF = new
 ToolboxWorkspaceFactoryClass();
 IWorkspace ws = txWSF.OpenFromFile(
 arcGISinstallationAddress + "\\" + arctoolboxAddress,
 ArcMap.Application.hWnd);
 IToolboxWorkspace toolboxWS = ws as IToolboxWorkspace;

 IGPToolbox gpToolbox = toolboxWS.OpenToolbox(toolbox);
 IGPTool gpTool = gpToolbox.
 OpenTool("MultipleRingBuffer");

 commandHelper.SetTool(gpTool);
 commandHelper.Invoke(null);

c12.indd 389c12.indd 389 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

390 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

Developers can execute system and custom tools asynchronously very simply by calling the
geoprocessor object’s ExecuteAsync() method. By calling ExecuteAsync(), the tool is submitted
to the geoprocessing queue.

As an example, the following code snippet executes the Multiple Ring Buffer system tool in a
background process:

protected override void OnClick()
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 if (map.Layer[0] == null)
 { return; }

 ILayer layer = map.Layer[0];
 IDataset dataset = layer as IDataset;

 IGeoProcessor2 gp = new GeoProcessorClass();
 gp.AddOutputsToMap = true;
 gp.OverwriteOutput = true;

 //syntax of the tool from tool's reference page
 //MultipleRingBuffer_analysis (Input_Features, Output_Feature_class,
 //Distances,
 //{Buffer_Unit}, {Field_Name}, {Dissolve_Option},
 //{Outside_Polygons_Only})

 IVariantArray parameters = new VarArrayClass();
 //Input_Features
 parameters.Add(layer);
 //Output_Feature_class
 parameters.Add(dataset.BrowseName + "MRB");
 //you have to use ; to separate the distances (multivalue)
 parameters.Add("10;50;100");
 //{Buffer_Unit}
 parameters.Add("kilometers");
 //{Field_Name}
 parameters.Add("");
 //{Dissolve_Option}
 parameters.Add("ALL");
 gp.ExecuteAsync("MultipleRingBuffer_analysis", parameters);
}

For custom tools, you have to be sure that the tool is not confi gured to always be executed in the
foreground. By default, all custom tools are confi gured to be executed in the foreground. You can
change this option simply by right-clicking the tool in the Catalog tree and selecting Properties
from the context menu. Then, just make sure the Always run in foreground check box is not
checked. (See Figure 12-27.)

c12.indd 390c12.indd 390 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geoprocessing in the Background ❘ 391

Note that calling ExecuteAsync() without changing the confi guration of the custom tool doesn’t
make it run in a background process. The following code snippet illustrates how to execute a
custom tool in a background process:

protected override void OnClick()
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 if (map.Layer[0] == null)
 { return; }
 if (map.LayerCount < 2)
 { return; }
 Geoprocessor gp = new Geoprocessor();
 gp.AddOutputsToMap = true;
 gp.OverwriteOutput = true;

 gp.AddToolbox(@"D:\testToolbox.tbx");

 //syntax of the custom tool
 //BufferSelectKML (BufferFeatures, Input_Feature_Layer, Output_KMZ_File)
 IVariantArray parameters = new VarArrayClass();
 //BufferFeatures
 parameters.Add(map.Layer[1]);

 //Input_Feature_Layer
 parameters.Add(map.Layer[0]);
 //Output_KMZ_File
 parameters.Add(@"D:\selectedCities.kmz");
 //executing by Name of custom tool
 gp.ExecuteAsync("BufferSelectKML", parameters);
}

FIGURE 12-27

c12.indd 391c12.indd 391 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

392 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

You can fi nd the source code for this example in the RunningCustomToolInBackground.cs fi le in
the GeoprocessingProject solution on this book’s page on Wrox.com.

NOTE As mentioned previously, by invoking ExecuteAsync(), the tool is sub-
mitted to the geoprocessing queue. A tool on the geoprocessing queue will not
start executing until the method that submitted the tool to the queue has been
fully processed. As an example, in the following code, the OnClick() method
submits tool1 and tool3 to the geoprocessing queue, so these geoprocessing
processes will not start until after the full execution of OnClick().

protected override void OnClick()
 {
 //code to instantiate geoprocessor object
 //and configure each geoprocessing tool
 gp.ExecuteAsync(tool1);
 gp.Execute(tool2, null);
 gp.ExecuteAsync(tool3);
 gp.Execute(tool4, null);
 MessageBox.Show("some message");

 }

The execution of this code is as follows (assuming that all tools fi nished their jobs
successfully):

 1. tool2 is executed.

 2. tool4 is executed.

 3. MessageBox pops up.

 4. tool1 is submitted to the geoprocessing queue.

 5. tool3 is submitted to the geoprocessing queue.

Tools are executed in a background process in the order in which they were
added to the queue.

Only one tool can run in the background; all other submitted tools will be waiting for execution in
the queue. Once a tool fi nishes executing, the next waiting tool will start executing from queue.

An important point in background geoprocessing is that inputs of tools that are going to be
submitted to the geoprocessing queue must exist when the tools are submitted to the geoprocessing
queue. Otherwise the tools fail to be submitted. With the knowledge of this important point, two
cases might happen.

The fi rst case happens when geoprocessing tools are independent of each other. In this case, you can
freely submit multiple unrelated geoprocessing tools to the queue to be executed in the background
in the same method. By unrelated tools, I mean there is no connection or relationship between
input and output parameters of submitted tools. For example, considering the code snippet in the
preceding note, tool1 can be an overlay of two existing feature classes and tool3 can be a buffer of
another existing feature class.

c12.indd 392c12.indd 392 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Geoprocessing in the Background ❘ 393

In the second case, when there is a connection or relationship between input and output parameters
of tools, you have to consider that carefully. In this case, since all input parameters of all tools must
exist prior to the tools’ submissions, submitting dependent tools to the geoprocessing queue in the
same method is not possible and results in an error. As an example, when tool1 buffers an existing
feature class and the resultant feature class becomes an input in tool3’s execution, you cannot
submit tool1 and tool3 to the geoprocessing queue in the OnClick() method.

In this case, there are some approaches you can use to be sure about the existence or creation of
input parameters before submitting tools to the geoprocessing queue. The simplest approach is
using ModelBuilder to chain various tools. As you see in this chapter, a model can be executed
by a geoprocessor object in foreground as well as background processes. Although the model is
composed of several tools, it is treated as a single tool by the geoprocessor object; as a result, the
existence of any intermediate data will not be validated.

Another more fl exible approach is to submit each tool in different method calls after ensuring the
completion of execution of previous tool(s). In this approach, the geoprocessor object must listen to
the events that are fi red by geoprocessing tools after completion of background execution. In the last
Try It Out of this chapter, you implement this approach.

TRY IT OUT Opening a Running Dependent Geoprocessing Tool Using a

 Queue (BackgroundGPUsingQ.zip)

 1. Open the GeoprocessingProject solution and add a new add-in component to your project. Name
it BackgroundGPUsingQ, provide the confi guration for the button (shown in Figure 12-28), then
click Finish.

FIGURE 12-28

c12.indd 393c12.indd 393 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

394 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

 2. In this example, you are going to determine which areas are more than 50 kilometers away from
existing rivers. For the sake of simplicity, this example uses the data from TemplateData.gdb,
but feel free to use another data set. Note that in this example TemplateData.gdb is copied to
D:\DataFolder and renamed to fileGDB.gdb. Enter the following using directives at the top of
the BackgroundGPUsingQ.cs fi le:

using ESRI.ArcGIS.Geoprocessing;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geoprocessor;
using ESRI.ArcGIS.AnalysisTools;
using System.Windows.Forms;

 3. You need to declare two module level variables to be accessible by all methods in the
BackgroundGPUsingQ class. Enter the following code somewhere in the BackgroundGPUsingQ
class outside of any existing method:

 Geoprocessor geoprocessor = null;
 Queue<IGPProcess> gpToolsQ = null;

 4. Initialize the geoprocessor and queue objects in the constructor of the class.

 geoprocessor = new Geoprocessor();
 gpToolsQ = new Queue<IGPProcess>();
 geoprocessor.OverwriteOutput = true;
 geoprocessor.AddOutputsToMap = true;

In order to add an event handler for the ToolExecuted event of a geoprocessor object, enter
+= after geoprocessor.ToolExecuted and you will see what is shown in Figure 12-29.

FIGURE 12-29

Press the TAB button twice to insert the skeleton code for the event handler. The fi nal class con-
structor should be similar to the following code:

public BackgroundGPUsingQ()
 {
 geoprocessor = new Geoprocessor();
 gpToolsQ = new Queue<IGPProcess>();
 geoprocessor.OverwriteOutput = true;
 geoprocessor.AddOutputsToMap = true;

 geoprocessor.ToolExecuted += new
 EventHandler<ToolExecutedEventArgs>(geoprocessor_ToolExecuted);
 }

c12.indd 394c12.indd 394 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geoprocessing in the Background ❘ 395

 5. Enter following code in the OnClick() method:

 try
 {
 string copyOfTemplateGDB = @"D:\DataFolder\fileGDB.gdb";
 gpToolsQ.Clear();

 ESRI.ArcGIS.AnalysisTools.Buffer bufferTool = new
 ESRI.ArcGIS.AnalysisTools.Buffer();
 bufferTool.in_features = copyOfTemplateGDB + @"\us_rivers";
 bufferTool.buffer_distance_or_field = "50 Kilometers";
 bufferTool.out_feature_class = copyOfTemplateGDB + @"\bufferRivers";

 Erase eraseTool = new Erase();
 eraseTool.in_features = copyOfTemplateGDB + @"\states";
 eraseTool.erase_features = bufferTool.out_feature_class;
 eraseTool.out_feature_class = copyOfTemplateGDB +
 @"\distantAreasFromRivers";

 gpToolsQ.Enqueue(bufferTool);
 gpToolsQ.Enqueue(eraseTool);

 geoprocessor.ExecuteAsync(gpToolsQ.Dequeue());
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 6. Clear a line of code inside the event handler that starts with throw and write some code to
execute tools by using the concept of fi rst-in-fi rst-out. The following is the complete event handler
for the ToolExecuted event:

void geoprocessor_ToolExecuted(object sender, ToolExecutedEventArgs e)
 {
 IGeoProcessorResult2 result = (IGeoProcessorResult2)e.GPResult;
 try
 {
 //the first tool has executed successfully
 if (result.Status == esriJobStatus.esriJobSucceeded)
 {
 //execute next tool in the queue using background
 if (gpToolsQ.Count > 0)
 {
 geoprocessor.ExecuteAsync(gpToolsQ.Dequeue());
 }
 }
 //If the background process of a tool fails
 //stop executing next tools in the queue
 else if (result.Status == esriJobStatus.esriJobFailed)
 {
 string message = result.Process.Tool.Name + " failed, any
 remaining processes will not be executed.";

c12.indd 395c12.indd 395 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

396 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

 gpToolsQ.Clear();
 MessageBox.Show(message, "Error");
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 7. Change the XML confi guration fi le to place the button on the GeoprocessingToolbar and run the
code.

How It Works

In this Try It Out, you created a queue object that contains all the tools needed for it to be executed
in the background. You added all the tools to the queue object by calling its Enqueue() method.
Then you called the geoprocessor’s ExecuteAsync() method to run the fi rst tool in the queue in the
background.

Before that, you made the geoprocessor object to listen to events that geoprocessing tools fi re. Since you
want to execute dependent geoprocessing tools, you need to submit tools to the geoprocessing queue in
different methods or different method calls. In this situation, you resorted to the concept of FIFO (First
In First Out) to implement this logic.

As mentioned, you called the geoprocessor’s ExecuteAsync() method in the OnClick() method to run
the fi rst tool in the queue. When this tool fi nishes its job, it fi res the ToolExecuted event. Since you
added an event handler for this kind of event, you can use the IGeoProcessorResult2 interface, which
contains valuable information about the status and output of the executed tool.

If the tool completed its job successfully and the queue object contains other tools, you use the
Dequeue() method of the queue object to offer the next tool to be submitted to the geoprocessing
queue.

In summary, all the tools in the queue (except the fi rst one) are submitted to the geoprocessing queue in
different calls to the ToolExecuted event handler.

NOTE Erase analysis is only available in ArcGIS for Desktop with the ArcInfo
license in ArcGIS 10.0 and Advanced in ArcGIS 10.1.

When a geoprocessing tool is executing in the background, the progress bar of ArcGIS for Desktop
applications shows what is running. Unfortunately, this new and sometimes confusing marquee
style report of running tools doesn’t provide the percentage of the completed job. It just shows what
geoprocessing tool at the moment is running in the background. If a user clicks on the marquee, she
or he will be guided to the Results window, shown in Figure 12-30.

c12.indd 396c12.indd 396 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geoprocessing in the Background ❘ 397

NOTE The funny thing about this progress bar is that sometimes, the fi rst time
you run a tool in the background in any ArcGIS for Desktop applications session,
you won’t see the tool’s marquee. But after execution of the fi rst tool, you will see
the marquee, which reports the running tool.

Bach Processing

Up to this point in this chapter you have learned how to run geoprocessing tools and models on
limited set of data sets in foreground as well as background processes. Sometimes it is necessary
to run the same set of geoprocessing tools on large number of data sets and this is where batch
processing comes into play.

In order to perform geoprocessing in batch mode, as a user of ArcGIS for Desktop applications you
can right-click on the tool in the ArcToolbox window and select the Batch item from context menu.
Then you should add all the required input parameters in the batch grid for the fi rst process
(since the batch grid includes one process by default). For adding another process (iteration of the
same tool or model with the different set of inputs) you should click on the Add Row button and
provide the necessary input parameters for the second process and so on.

As a developer, you need to list all kinds of available geospatial data such as feature classes, tables,
and raster fi les to iterate through them and then perform geoprocessing. In order to iterate
through a list of available geospatial data of a specifi c kind, you can use several methods
of the IGeoProcessor2 interface in very fl exible manner. For example, suppose that you want to
execute the Create Thiessen Polygons tool for all point feature classes that are in the USA feature
data set of the D:\fileGDB.gdb fi le geodatabase. The following code snippet illustrate using the
ListFeatureClasses() method of IGeoProcessor2 for this task:

FIGURE 12-30

c12.indd 397c12.indd 397 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

398 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

 IGeoProcessor2 gp = new GeoProcessorClass();
 gp.SetEnvironmentValue("workspace", @"D:\fileGDB.gdb");
 gp.AddOutputsToMap = false;
 gp.OverwriteOutput = true;
 //List all point feature classes in USA FeatureDataset
 IGpEnumList featureClasses = gp.ListFeatureClasses("*", "point", "USA");
 string featureClass = featureClasses.Next();
 while (string.IsNullOrEmpty(featureClass) == false)
 {
 IVariantArray parameters = new VarArrayClass();
 //in_features
 parameters.Add(featureClass);
 //out_feature_class
 parameters.Add(featureClass + "Thiessen");

 //Run in foreground process
 //gp.Execute("CreateThiessenPolygons_analysis", parameters, null);

 //or Run in background process
 gp.ExecuteASync("CreateThiessenPolygons_analysis", parameters);
 featureClass = featureClasses.Next();
 }

Before using ListFeatureClasses() or any other methods of IGeoProcessor2 that lists
available geospatial data, you have to set the workspace environment variable using the
SetEnvironmentValue() method. After setting the workspace environment variable, the
geoprocessor object knows where to fi nd the geospatial data.

The ListFeatureClasses() method solicits three inputs. The fi rst input parameter fi lters out the
name of available geospatial data using wild card characters. The second parameter determines the
feature type and uses the specifi c keyword. The third parameter specifi es the parent FeatureDataset.
Using these three inputs provides a fl exible way of listing desired geospatial data.

NOTE In addition to ListFeatureClasses(), there are other methods provided
by IGeoProcessor2 interface with almost same set of input parameters to list
geospatial data as well as toolboxes and tools. These methods are called list

methods.

The return value of these methods is of type IGpEnumList. As illustrated in preceding code snippet,
the Next() method of the IGpEnumList is a string. Based on the method used for instantiating
IGpEnumList, the string points to the name of different things. For example, if IGpEnumList is
created as a result of invoking the ListTables() method, the Next() method will return name of
available tables.

Each list method has different set of keywords (such as “point” for ListFeatureClasses()) that
can be used to confi ne the result. Consult the online ArcGIS Resource Center to fi nd out more about
list methods.

c12.indd 398c12.indd 398 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Geoprocessing in the Background ❘ 399

Can I Manage the Execution of Geoprocessing Tools?

Throughout this chapter, you see how to manage the execution of a geoprocessing tool in
background or foreground processes. There are some situations in which developers haven’t enough
control on execution of a tool in background or foreground processes. On the other hand, users of
ArcGIS for Desktop applications cannot perform certain tasks with data processed in background.
Some of the most important situations are listed below. Consult the ArcGIS online help for complete
descriptions of these situations.

 ➤ Background geoprocessing before edit session: Users cannot start an edit session while
a geoprocessing tool is executing in the background or there are pending background
processes. This means all the geoprocessing tools that have been submitted to the
geoprocessing queue must be executed or canceled to begin an edit session.

 ➤ Edit session before background geoprocessing: When users edit data, all geoprocessing
tools (accessed using ArcToolbox) will be executed in a foreground process even
if background processing is enabled. In this case, calling the geoprocessor object’s
ExecuteAsync() method results in an error. The easiest approach to work around this
issue is to warn the user to save his or her edits and perform Stop Editing, as illustrated in
the following code snippet:

 UID uid = new UIDClass();
 uid.Value = "esriEditor.Editor";
 IEditor editor = ArcMap.Application.FindExtensionByCLSID(uid) as IEditor;

 //Check to see if an edit session has already been started
 if (editor.EditState == esriEditState.esriStateEditing)
 {
 MessageBox.Show("Stop your edit and try again", "STOP!");
 return;
 }

 //code to initialize geoprocessor
 //...

In order to run the preceding code, add a reference to ESRI.ArcGIS.Editor.

 ➤ Working with personal geodatabases with 64-bit background geoprocessing: With the
release of service pack 1 of ArcGIS for Desktop, 64-bit background geoprocessing became
available to users. This new framework needs 64-bit client libraries to make connections to
data sources. On the other hand, personal geodatabases are implemented using Microsoft
JET Database Engine, which is natively 32-bit. Therefore, 64-bit background geoprocessing
cannot connect to a personal geodatabase and use its containing data sets as input or output.
This means if you install service pack 1 of ArcGIS, you will not be able to use a personal
geodatabase in background geoprocessing. But this doesn’t mean you have to forget the
personal geodatabase format. Since ArcGIS for Desktop applications are 32-bit applications,
they communicate with each data source using 32-bit libraries and they can use data sets
inside a personal geodatabase. In this case, if your GIS workfl ows contain various data sets
with a personal geodatabase format, you can run the geoprocessing tools in a foreground
process or uninstall the 64-bit background geoprocessing. The normal 32-bit background
geoprocessing will return after removing 64-bit background geoprocessing.

c12.indd 399c12.indd 399 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

400 ❘ CHAPTER 12 GEOPROCESSING WITH TOOLS AND MODELS

SUMMARY

The geoprocessing framework is an indispensable part of ArcObjects. The fundamental purpose
of geoprocessing in ArcObjects is to provide an easier way to create tools and models to automate
tasks.

Covering all aspects of geoprocessing in ArcObjects can take a whole book, and explaining all
aspects of geoprocessing using ModelBuilder or Python needs another book, so this chapter is
just an introduction to the topic. Remember that geoprocessing is the bread and butter of every
GIS professional and you need to know the nuts and bolts of this framework. If you master the
geoprocessing framework, you can perform many of the needed tasks of a GIS developer with less
code and in a shorter time. It is one of the ways that developers can get things done quickly.

EXERCISES

 1. What types in ArcObjects are used to handle the parameters of geoprocessing tools?

 2. In order to run custom geoprocessing tools, fi rst the toolbox containing the custom tools must

be added to the geoprocessor object. How can custom toolboxes be added to a geoprocessor

object?

 3. How can you make use of background geoprocessing when your tools are irrelevant to each

other? In other words, there is no connection between the input and output parameters

of tools.

 4. Is it possible to start an edit session when there are one or more geoprocessing tools running?

You will fi nd the answers to these exercises in this book’s appendix.

c12.indd 400c12.indd 400 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 401

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Geoprocessor object Starting at version 9.2, all tools in ArcToolbox and created models in

ModelBuilder can be invoked in code without writing low-level ArcObjects

code using a geoprocessor object. This object can be created using the

IGeoprocessor2 interface of the ArcObjects Geoprocessing library as

well as using the Geoprocessor-managed assembly.

geoprocessor

.Execute() method

The Execute() method solicits for the geoprocessing tool, which is

going to be executed as well as the parameters needed for the execution

of the tool.

Calling the Execute() method results in execution of the tool in a

foreground process. This means that during execution of the tool, any

interaction of the user with the user interface of ArcGIS for Desktop

applications will be disabled and the code after the geoprocessor.

Execute() method cannot be executed until the tool’s execution

completes successfully or fails.

Opening a tool’s

dialog box

There is a type in the Geoprocessing library of ArcObjects with the sole

purpose of opening the dialog box of tools: the GPToolCommandHelper

CoClass. In order to open a tool’s dialog box using this class, you

have to fi rst get a reference to a tool, then set the tool using either the

SetTool() or SetToolByName() method and fi nally call the Invoke()

or InvokeModal() method.

Background

geoprocessing

Since ArcGIS version 10, the preferred and default method of

geoprocessing is background geoprocessing. With background

geoprocessing, ArcGIS for Desktop applications users can keep

working within applications while a geoprocessing tool is running in the

background. In contrast to foreground geoprocessing, there is another

Windows process that handles the background geoprocessing.

64-bit background

geoprocessing

and personal

geodatabases

With release of ArcGIS for Desktop service pack 1, 64-bit background

geoprocessing became available to users. This 64-bit background

geoprocessing needs 64-bit client libraries to connect to data

sources. Personal geodatabases are implemented using Microsoft JET

Database Engine, which is natively 32-bit. Therefore, 64-bit background

geoprocessing cannot connect to a personal geodatabase and use its

containing data sets as input or output.

c12.indd 401c12.indd 401 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c12.indd 402c12.indd 402 25/02/13 12:22 PM25/02/13 12:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Feature Data Management

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Using GUIDs to make the most of customization

 ➤ Creating new geodatabases

 ➤ Specifying spatial reference systems

 ➤ Creating FeatureClasses and FeatureDatasets

 ➤ Inserting new features using insert and search cursors

 ➤ Modifying features using search and update cursors

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter13 folder and
is individually named according to the names throughout the chapter.

This chapter describes common techniques and methods for working with vector geospatial
data using the geodatabase model. The geodatabase model provides straightforward and
well-designed types for most supported data sources in ArcGIS. You can perform almost all
the operations outlined in this chapter using the geoprocessing framework (see Chapter 12).
But you gain a lot more fl exibility and higher performance when using the geodatabase model
directly. This chapter starts with using GUIDs in ArcObjects, which may seem strange at fi rst.
But you will see the use of GUIDs in all aspects of ArcObjects programming, including data
management and what role it plays.

13

c13.indd 403c13.indd 403 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

404 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

USE OF GUID IN ARCOBJECTS

As stated several times in this book, ArcObjects is based on Microsoft COM technology. In
ArcObjects, any type (such as interfaces and CoClasses) can be accessed through its Global Unique
Identifi er, or GUID. The GUID for classes is called CLSID, and the GUID for interfaces is called
interface ID (IID). A ProgID is friendly text replacement for a CLSID.

You can see the GUIDs of all the types in ArcObjects using ILSpy or .NET Refl ector. Figure 13-1
illustrates the GUID of PointClass in ILSpy.

FIGURE 13-1

You can use a type’s GUID to create a new instance of that type. The following code snippet creates
a new instance of PointClass. In this case, you use the Activator type in the System namespace
to instantiate the specifi ed type using a GUID.

 Guid pointClassGUID = new Guid("00A5CB41-52DA-11D0-A8F2-00608C85EDE5");
 Type PointClassType = Type.GetTypeFromCLSID(pointClassGUID);
 IPoint newPoint = Activator.CreateInstance(PointClassType) as IPoint;
 //alternative to the following line of code
 //IPoint newpoint = new PointClass();

In most cases in ArcObjects, you can use the simple instantiation approach using the new keyword.
But you have to resort to this unusual way of instantiation in certain situations, which you see in the
next section.

In addition to instantiation, you can use the GUID to access or reference an existing instance of
the objects. This way, you can easily use existing commands, menus, and extensions of ArcGIS for
Desktop applications.

In Chapter 12, you learned how to open a dialog box of an existing geoprocessing tool using the
following code:

c13.indd 404c13.indd 404 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Use of GUID in ArcObjects ❘ 405

 string fileGDBAddress = @"D:\testFileGDB.gdb";
 string toolboxName = "testToolbox";
 string toolName = "simpleMultipleRingBuffer";

 IWorkspaceFactory fWF = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = fWF.OpenFromFile(fileGDBAddress, ArcMap.Application.hWnd);
 IToolboxWorkspace toolboxWS = ws as IToolboxWorkspace;

 //access to the toolbox
 IGPToolbox toolbox = toolboxWS.OpenToolbox(toolboxName);
 //get the tool or model
 IGPTool tool = toolbox.OpenTool(toolName);

 IGPToolCommandHelper2 commandHelper = new GPToolCommandHelperClass() as
 IGPToolCommandHelper2;
 commandHelper.SetTool(tool);
 commandHelper.Invoke(null);

As an alternative solution you can use the ArcToolbox extension for the same purpose as using the
ProgID of ArcToolboxExtensionClass.

 string fileGDBAddress = @"D:\testFileGDB.gdb";
 string toolboxName = "testToolbox";
 string toolName = "simpleMultipleRingBuffer";

 IWorkspaceFactory fWF = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = fWF.OpenFromFile(fileGDBAddress, ArcMap.Application.hWnd);
 IToolboxWorkspace toolboxWS = ws as IToolboxWorkspace;

 //access to the toolbox
 IGPToolbox toolbox = toolboxWS.OpenToolbox(toolboxName);
 //get the tool or model
 IGPTool tool = toolbox.OpenTool(toolName);
 IArcToolboxExtension arcToolboxEx = ArcMap.Application.
 FindExtensionByName("esriGeoprocessingUI.ArcToolboxExtension") as
 IArcToolboxExtension;
 arcToolboxEx.ArcToolbox.InvokeTool(0, tool, null, true);

You can search the topics Names and IDs in ArcObjects Help for .NET to see the GUID of all
commands and extensions in all ArcGIS for Desktop applications. Also you can use the GUID of
commands and tools of ArcGIS for Desktop applications without writing any code. The following
XML fragment defi nes a toolbar with a tool (Select By Circle) and a command (Clear Selected
Features).

<Toolbars>
 <Toolbar id="AmirianDevExpert_SimpleToolbar" caption="Sample Toolbar"
showInitially="true">
 <Items>
 <Button refID="{91A04425-46F5-49B4-847B-7ED004073491}"
separator="true"/>
 <Button refID ="{37C833F3-DBFD-11D1-AA7E-00C04FA37860}"/>
 </Items>
 </Toolbar>
 </Toolbars>

c13.indd 405c13.indd 405 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

406 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

As you see with using just the GUID of commands, you can easily customize the user interface
of ArcGIS for Desktop applications. In addition, you can also execute the commands using the
ICommandBars interface, which is defi ned in the esriSystem namespace. The following code
snippet references ArcMap’s Clear Selected Features command and then clears all selected features
in the active data frame:

 ICommandBars commandBars = ArcMap.Application.Document.CommandBars;
 UID clearSelectedFeaturesUID = new ESRI.ArcGIS.esriSystem.UIDClass();
 clearSelectedFeaturesUID.Value = "{37C833F3-DBFD-11D1-AA7E-00C04FA37860}";
 ICommandItem commandItem = commandBars.Find(clearSelectedFeaturesUID,
 false, false);

 if (commandItem != null)
 {
 commandItem.Execute();
 }

WORKING WITH THE GEODATABASE MODEL

The ArcGIS platform works with geospatial data through the geodatabase model. The geodatabase
model consists of several ArcObjects libraries that provide a common programming model for all
supported data sources in ArcGIS.

Primary interfaces for working with geospatial data using the geodatabase model are
IWorkspaceFactory and IWorkspace. The IWorkspaceFactory interface is implemented by the
WorkspaceFactory Abstract Class. Based on the type and format of geospatial data, there are
different subclasses of WorkspaceFactory CoClasses that developers can use to work with diverse
types of geospatial data.

As opposed to most other objects in ArcObjects, all subclasses of WorkspaceFactory are singleton
objects. Singleton objects are objects which have only one instance. In other words, any call to
the constructor of a singleton object (using the new keyword) will return a reference to an existing
object. After instantiation, they are available to all objects in the application. Using singleton
COM objects in a similar way to normal objects in .NET might result in unexpected errors. For
this reason, using ArcObjects singleton objects needs careful memory management. In ArcObjects
programming, the System.Activator class must be used to instantiate, and the System.Runtime
.InteropServices.Marshal or ESRI.ArcGIS.ADF.ComReleaser classes should be used for
releasing the references of singleton objects. Because of this, you need to know the GUID of the
singleton object to be able to use the Activator class.

NOTE You can fi nd the ProgID of all ArcObjects singleton objects in the
“Interacting with singleton objects” topic in the ArcObjects Help for .NET.

Figure 13-2 shows the primary types for working with geodatabases.

c13.indd 406c13.indd 406 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Geodatabase Model ❘ 407

Creating Geodatabases

In order to create a brand new geodatabase, you fi rst need to create an instance of the
appropriate WorkspaceFactory subclass using the System.Activator class and then call
IWorkspaceFactory’s Create() method. The following code uses the GUID or ProgID of the
FileGDBWorkspaceFactory CoClass to create a new fi le geodatabase:

Guid fgdbGUID = new Guid("71FE75F0-EA0C-4406-873E-B7D53748AE7E");
Type factoryType = Type.GetTypeFromCLSID(fgdbGUID);

//alternatively
//Type factoryType = Type.
//GetTypeFromProgID("esriDataSourcesGDB.FileGDBWorkspaceFactory");

IWorkspaceFactory wsF = Activator.CreateInstance(factoryType) as
IWorkspaceFactory;
wsF.Create(path, fileGDBName, null, ArcMap.Application.hWnd);

FIGURE 13-2

GeodatabaseObjectModel

AccessWorkspaceFactory FileGDBWorkspaceFactory

IGeoDataset

IFeatureDataset

GeoDataset

FeatureDataset

1

*

Dataset

Table

ObjectClass

FeatureClass

Workspace
IWorkspace

IFeatureworkspace

IDataset

WorkspaceFactory

IWorkspaceFactory

*

DataSourceGDBObjectModel

SdeWorkspaceFactory

IDataset

c13.indd 407c13.indd 407 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

408 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

As the name suggests, the Create() method builds a new fi le geodatabase in the specifi ed path and
with the supplied name. This method returns the IWorkspaceName interface, which can be used to
get the IWorkspace interface.

Because there is no need for the wsF variable (an instance of FileGDBWorkspaceFactory) at this
point, you have to release any reference to this singleton object. In this case, you can use
the ComReleaser or Marshal class. The ComReleaser class is defi ned in the ESRI.ArcGIS
.ADF namespace, but in order to use it you have to add a reference to the ESRI.ArcGIS.ADF
.Connection.Local assembly. Internally, this class uses the Marshal class to release any reference
to COM objects (even after the references go out of scope, such as at the end of the method that
uses the singleton object). The Marshal class is defi ned in the System.Runtime.InteropServices
namespace. The following code illustrates both methods:

 //release all the references to singleton object (WorkspaceFactory)
 ESRI.ArcGIS.ADF.ComReleaser.ReleaseCOMObject(wsF);
 //alternatively
 int refsLeft = 0;
 do
 {
 refsLeft = System.Runtime.InteropServices.Marshal.ReleaseComObject(wsF);
 }
 while (refsLeft > 0);

Creating FeatureDatasets and FeatureClasses

In order to create FeatureDatasets, FeatureClasses, and tables, you can use the IFeatureWorkspace
interface. This interface is implemented by the Workspace class (refer to Figure 13-2). But in order
to use IFeatureWorkspace, you have to use IWorkspaceFactory to create or get a reference to an
existing workspace.

NOTE Chapter 7 explained the topic of creating tables using the IFeatureWorkspace
interface. The procedure for creating tables and FeatureClasses is similar except for
the need to use a spatial reference system for creating FeatureClasses.

As mentioned in the previous section, the IWorkspaceFactory’s Create() method returns an
IWorkspaceName object. You can use the IWorkspaceName object to get to the created Workspace
object using the Open() method of its IName interface. The following code illustrates the necessary
steps for creating a new geodatabase and treating it as a Workspace. (For more information on Name
objects, read the last pages of Chapter 7.)

 IWorkspaceName wsName = wsF.Create(path, fileGDBName, null,
 ArcMap.Application.hWnd);
 IName nameObj = wsName as IName;
 IWorkspace ws = nameObj.Open() as IWorkspace;

c13.indd 408c13.indd 408 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Geodatabase Model ❘ 409

For existing data sources such as geodatabases, you can use IWorkspaceFactory’s Open() or
OpenFromFile() method to connect to remote or local workspaces, respectively.

IWorkspace ws = wsF.OpenFromFile(fileGDBAddress, ArcMap.Application.hWnd);

NOTE Usually, IWorkspaceFactory’s Open() method is used to connect to
ArcSDE geodatabases, as shown in the following code:

//for ArcSDE Geodatabase
Guid sdebGUID = new
Guid("D9B4FA40-D6D9-11D1-AA81-00C04FA33A15");

Type factoryType = Type.GetTypeFromCLSID(sdebGUID);
IWorkspaceFactory wsF = Activator.
CreateInstance(factoryType) as IWorkspaceFactory;

IPropertySet pSet = new PropertySetClass();
//name of server
pSet.SetProperty("Server", "gisServer");
//port
pSet.SetProperty("Instance", "5151");
//name of Database
pSet.SetProperty("Database", "MunicipalityGDB");
//name of user connecting to DB
pSet.SetProperty("User", "sde");
//password of the user
pSet.SetProperty("Password", "@Keep#Moving_Forward");
//version of the geodatabase
pSet.SetProperty("Version", "sde.Default");

IWorkspace ws = wsF.Open(pSet, ArcMap.Application.hWnd);

In addition to remote geodatabases, IWorkspaceFactory's Open() method can
be used for opening local geodatabases. In this case, you need to provide just
the Database parameter. See the following code:

IPropertySet pSet = new PropertySetClass();
//path of Database
pSet.SetProperty("Database",
@"D:\DataFolder\testGDB.gdb");

IWorkspace ws = wsF.Open(pSet, ArcMap.Application.hWnd);

To create FeatureDatasets and stand-alone FeatureClasses (FeatureClasses not residing
in any FeatureDataset), you need to specify a spatial reference system object. To do so,
you have to use the ISpatialReferenceFactory interface, which is implemented by the
SpatialReferenceEnvironment CoClass. This interface has a number of methods for
specifying a spatial reference system.

c13.indd 409c13.indd 409 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

410 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

The ArcObjects Geometry namespace contains several enumerations that can be used to specify the
Well Known ID (WKID) of many available spatial reference systems in ArcGIS. The following code
illustrates the simplest way to specify a spatial reference system:

ISpatialReferenceFactory spatialReferenceFactory = new
SpatialReferenceEnvironmentClass();
int coordinateSystemID = (int)esriSRGeoCSType.esriSRGeoCS_WGS1984;

ISpatialReference srs = spatialReferenceFactory.
CreateGeographicCoordinateSystem(coordinateSystemID);

It also is possible to directly use the EPSG code for the known spatial references.

//for WGS 84 EPSG 4326
ISpatialReference srs = spatialReferenceFactory.
CreateGeographicCoordinateSystem(4326);

ArcGIS contains many predefi ned and ready-to-use spatial reference objects that can be accessed
using enumerations such as esriSRGeoCSType and esriSRProjCSType. In a case in which you
cannot fi nd your desired spatial reference system, you can defi ne the parameters of your spatial
reference system in a *.prj fi le and use the CreateESRISpatialReferenceFromPRJFile()
method of the ISpatialReferenceFactory interface.

ISpatialReferenceFactory spatialReferenceFactory = new
SpatialReferenceEnvironmentClass();
ISpatialReference srs = spatialReferenceFactory.
CreateESRISpatialReferenceFromPRJFile(@"D:\DataFolder\
higherResolutionWGS84.prj");

With Workspace and a spatial reference system, you can easily create a FeatureDataset using
IFeatureWorkspace’s CreateFeatureDataset() method.

//suppose that there is an existing file geodatabase
IWorkspace ws = wsF.OpenFromFile(fileGDBAddress, ArcMap.Application.hWnd);
IFeatureWorkspace fws = ws as IFeatureWorkspace;
IFeatureDataset fds = fws.CreateFeatureDataset(featureDatasetName, srs);

To create a FeatureClass inside an existing FeatureDataset, there is no need to specify a spatial
reference system; the spatial reference system will be inherited from the FeatureDataset. But to
create stand-alone FeatureClasses, you have to specify the spatial reference system for the fi eld that
stores the geometry of features. The next Try It Out shows how to create a fi le geodatabase and two
FeatureClasses inside and outside a FeatureDataset.

TRY IT OUT Creating a FileGeodatabase and FeatureClasses (SchemaCreation.zip)

 1. Create a new ArcMap Add-in project. Name the solution FeatureDataManagement. On the
Add-Ins Wizard’s Welcome page, provide the necessary information and click Next. Select Button
as the type of add-in, provide the information as shown in Figure 13-3, and click Finish.

c13.indd 410c13.indd 410 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Geodatabase Model ❘ 411

 2. Because you want to add various functionalities to this add-in, you need a way to share
parameters (such as the address of a fi le geodatabase) between different classes in your add-in.
The easiest way is to use a static class and static members. Add a new class to your add-in project
by right-clicking on your project in the Solution Explorer window and selecting Class from the
New Item submenu. Name the newly added class util. Then add six static variables that can be
accessed from anywhere in your add-in project. Figure 13-4 shows the entire util class (feel free
to change the hard-coded values).

FIGURE 13-3

FIGURE 13-4

c13.indd 411c13.indd 411 25/02/13 12:24 PM25/02/13 12:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

412 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

 3. Add ESRI.ArcGIS.Geodatabase, ESRI.ArcGIS.DataSourcesGDB, and ESRI.ArcGIS.Geometry
references to your project. In addition, add a reference to the System.Windows.Forms assembly
(using the Add Reference command) and type the following using directives at the top of the
CreatingFileGeodatabase.cs fi le’s code window:

using System.Windows.Forms;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.Geometry;

 4. Add the following code to the button’s OnClick() method to create the new fi le geodatabase.
Note that all the string parameters, such as the path and name of the fi le geodatabase, are
acquired from the static util class.

try
 {
 string path = util.path;
 string fileGDBName = util.fileGDBName;

 if (System.IO.Directory.Exists(path + "\\" + fileGDBName))
 {
 MessageBox.Show("there is a file geodatabase with the same path
 and name");
 return;
 }

 //for file Geodatabase
 Guid fgdbGUID = new Guid("71FE75F0-EA0C-4406-873E-B7D53748AE7E");
 Type factoryType = Type.GetTypeFromCLSID(fgdbGUID);

 IWorkspaceFactory wsF = Activator.CreateInstance(factoryType) as
 IWorkspaceFactory;
 wsF.Create(path, fileGDBName, null, ArcMap.Application.hWnd);
 MessageBox.Show(fileGDBName + " created successsfully");

 //releasing all the references to singleton COM objects
 int refsLeft = 0;
 do
 {
 refsLeft = System.Runtime.InteropServices.Marshal.
 ReleaseComObject(wsF);
 }
 while (refsLeft > 0);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 5. Add a new add-in command container and name it FeatureDataManagementToolbar (remember
the procedures for adding a command container, such as a toolbar, for ArcGIS 10.0 and 10.1 are
slightly different). Select Toolbar as the type of Add-in Command Bars, and add the reference to
the newly created button. Run the code and press the button within the ArcMap interface.

c13.indd 412c13.indd 412 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Geodatabase Model ❘ 413

 7. Add the following using directives at the top of the StandaloneFC.cs fi le:

using System.Windows.Forms;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.Geometry;

 8. Add the following code in the OnClick() method of StandaloneFC.cs to create a point
FeatureClass in the WGS84 spatial reference system:

 try
 {
 Type factoryType = Type.GetTypeFromProgID("esriDataSourcesGDB.
 FileGDBWorkspaceFactory");
 IWorkspaceFactory wsF = Activator.CreateInstance(factoryType) as
 IWorkspaceFactory;
 string fileGDBAddress = util.path + "\\" + util.fileGDBName;
 string fcName = util.featureClassName;
 //check the existence of the file geodatabase
 if (!System.IO.Directory.Exists(fileGDBAddress))
 {
 MessageBox.Show("there isn't a file geodatabase with the
 specified path and name");
 return;

 6. Add another add-in component to your project and name it StandaloneFC. Select Button as the
type of add-in, provide the settings displayed in Figure 13-5, and click Finish.

FIGURE 13-5

c13.indd 413c13.indd 413 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

414 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

 }
 IWorkspace ws = wsF.OpenFromFile(fileGDBAddress, ArcMap.Application.
 hWnd);
 IFeatureWorkspace fws = ws as IFeatureWorkspace;
 //check the existence of the FeatureClass
 IWorkspace2 ws2 = fws as IWorkspace2;
 if (ws2.get_NameExists(esriDatasetType.esriDTFeatureClass, fcName)
 == true)
 {
 MessageBox.Show(string.Format("The {0} FeatureClass already
 exists in the {1} file geodatabase", fcName, util.fileGDBName));
 return;
 }

 //create fields
 IFieldsEdit fields = new FieldsClass();

 IFieldEdit field = new FieldClass();
 field.Name_2 = "ObjectID";
 field.Type_2 = esriFieldType.esriFieldTypeOID;
 fields.AddField(field);

 // Create a geometry definition (and spatial reference) for the
 //feature class.
 IGeometryDefEdit geometryDefEdit = new GeometryDefClass();
 geometryDefEdit.GeometryType_2 = esriGeometryType.esriGeometryPoint;
 ISpatialReferenceFactory spatialReferenceFactory = new
 SpatialReferenceEnvironmentClass();
 int coordinateSystemID = (int)esriSRGeoCSType.esriSRGeoCS_WGS1984;
 ISpatialReference spatialReference = spatialReferenceFactory.
 CreateGeographicCoordinateSystem(coordinateSystemID);
 geometryDefEdit.SpatialReference_2 = spatialReference;

 field = new FieldClass();
 field.Name_2 = "Shape";
 field.Type_2 = esriFieldType.esriFieldTypeGeometry;
 field.GeometryDef_2 = geometryDefEdit as IGeometryDef;
 fields.AddField(field);

 field = new FieldClass();
 field.Name_2 = "Name";
 field.Type_2 = esriFieldType.esriFieldTypeString;
 fields.AddField(field);

 field = new FieldClass();
 field.Name_2 = "Population";
 field.Type_2 = esriFieldType.esriFieldTypeInteger;
 fields.AddField(field);

 field = new FieldClass();
 field.Name_2 = "Area";
 field.Type_2 = esriFieldType.esriFieldTypeDouble;
 fields.AddField(field);

 IFeatureClass fc = fws.CreateFeatureClass(fcName, fields, null,

c13.indd 414c13.indd 414 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Geodatabase Model ❘ 415

 null, esriFeatureType.esriFTSimple, "Shape", null);
 MessageBox.Show(fcName + " created successsfully");
 //release all the references to singleton COM object
 //(WorkspaceFactory)
 int refsLeft = 0;
 do
 {
 refsLeft = System.Runtime.InteropServices.Marshal.
 ReleaseComObject(wsF);
 }
 while (refsLeft > 0);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 9. Add another add-in component to your project and name it CreatingFDS. Select Button as the
type of add-in, provide the settings shown in Figure 13-6, and click Finish.

FIGURE 13-6

 10. Add the following using directives at the top of the CreatingFDS.cs fi le’s code window:

using System.Windows.Forms;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.Geometry;

c13.indd 415c13.indd 415 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

416 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

 11. Enter the following code in the OnClick() method of CreatingFDS.cs to create a
FeatureDataset and a FeatureClass inside it:

 try
 {
 Type factoryType = Type.GetTypeFromProgID("esriDataSourcesGDB.
 FileGDBWorkspaceFactory");
 IWorkspaceFactory wsF = Activator.CreateInstance(factoryType) as
 IWorkspaceFactory;
 string fileGDBAddress = util.path + "\\" + util.fileGDBName;
 string fdsName = util.featureDatasetName;
 //check the existence of the file geodatabase
 if (!System.IO.Directory.Exists(fileGDBAddress))
 {
 MessageBox.Show("there isn't a file geodatabase with the
 specified path and name");
 return;
 }

 IFeatureWorkspace fws = wsF.OpenFromFile(fileGDBAddress, ArcMap.
 Application.hWnd) as IFeatureWorkspace;
 //check the existence of FeatureDataset
 IWorkspace2 ws = fws as IWorkspace2;
 if (ws.get_NameExists(esriDatasetType.esriDTFeatureDataset,
 fdsName) == true)
 {
 MessageBox.Show(string.Format("The {0} FeatureDataset already
 exists in the {1} file geodatabase", fdsName, util.fileGDBName));
 return;
 }

 //create SRS object
 ISpatialReferenceFactory spatialReferenceFactory = new
 SpatialReferenceEnvironmentClass();
 int coordinateSystemID = (int)esriSRGeoCSType.esriSRGeoCS_WGS1984;
 ISpatialReference spatialReference = spatialReferenceFactory.
 CreateGeographicCoordinateSystem(coordinateSystemID);
 //creating FeatureDataset
 IFeatureDataset fds = fws.CreateFeatureDataset(fdsName,
 spatialReference);

 //Creating FeatureClass
 IFieldsEdit fields = new FieldsClass();
 fields.FieldCount_2 = 5;

 IFieldEdit field = new FieldClass();
 field.Name_2 = "ObjectID";
 field.Type_2 = esriFieldType.esriFieldTypeOID;
 fields.Field_2[0] = field;

 //there is no need to set the spatial reference for FeatureClasses
 //inside a FeatureDataset
 //since the spatial reference system is inherited from the parent
 //FeatureDataset
 IGeometryDefEdit geometryDef = new GeometryDefClass();

c13.indd 416c13.indd 416 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Geodatabase Model ❘ 417

 geometryDef.GeometryType_2 = esriGeometryType.esriGeometryPoint;

 field = new FieldClass();
 field.Name_2 = "Shape";
 field.Type_2 = esriFieldType.esriFieldTypeGeometry;
 field.GeometryDef_2 = geometryDef;
 fields.Field_2[1] = field;

 field = new FieldClass();
 field.Name_2 = "Name";
 field.Type_2 = esriFieldType.esriFieldTypeString;
 fields.Field_2[2] = field;

 field = new FieldClass();
 field.Name_2 = "Population";
 field.Type_2 = esriFieldType.esriFieldTypeInteger;
 fields.Field_2[3] = field;

 field = new FieldClass();
 field.Name_2 = "Area";
 field.Type_2 = esriFieldType.esriFieldTypeDouble;
 fields.Field_2[4] = field;

 fds.CreateFeatureClass(util.featureClassName + "2", fields, null,
 null, esriFeatureType.esriFTSimple, "Shape", null);

 int refsLeft = 0;
 do
 {
 refsLeft = System.Runtime.InteropServices.Marshal.
 ReleaseComObject(wsF);
 }
 while (refsLeft > 0);
 }
 catch (Exception ex)
 {

 MessageBox.Show(ex.Message);
 }

 12. Modify the add-in confi guration fi le to place all the buttons on the toolbar. Then run your code
and test it in ArcMap.

How It Works

In this example, you used static classes for sharing functionality between different add-in compo-
nents. Static classes and static class members are used to create data members and methods that can be
accessed without creating an instance of the class.

Every FeatureClass in a geodatabase must have an ID and a geometry fi eld. You explored the use of
the IGeometryDefinition interface for setting a spatial reference system and the type of geometry for
FeatureClasses and as a result for the defi nition of a geometry fi eld. Also, as you have witnessed you
can check for the existence of any dataset in a Workspace using the IWorkspace2 interface.

c13.indd 417c13.indd 417 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

418 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

WORKING WITH FEATURES

Features can be created and accessed directly from FeatureClasses. In other words, FeatureClasses
(through the IFeatureClass interface) have methods such as CreateFeature() and
GetFeature() to access and modify features. In addition, a feature can call the Delete() method
on the IRow interface to remove itself from the FeatureClass where it is stored. But using these
methods is not effi cient in certain situations. The following sections describe some solutions that can
be used effi ciently when working with features.

Creating New Features

In general, new features can be created using two approaches. In the fi rst approach, a feature is
created as a result of calling IFeatureClass's CreateFeature() method. Then after assigning
geometry and other attributes to the feature, you must call the Store() method on the IFeature
interface to insert the new feature into a geodatabase. The following code snippet creates a new
feature and sets one of its attribute values and its geometry:

//featureClass variable is an instance of IFeatureClass
IFeature newFeature = featureClass.CreateFeature();
newFeature.Value[indexOfAField] ="someValue";
newFeature.Shape = Polygon;
newFeature.Store();

The second approach for creating features is to use insert cursors and the IFeatureBuffer
interface. In this case, a new FeatureBuffer and an insert cursor are created using the IFeatureClass’s
CreateFeatureBuffer() and Insert() methods, respectively. The Shape property must be used
to set the geometry of the FeatureBuffer, and the set_Value() method has to be used to set the
value for fi elds.

//featureClass variable is an instance of IFeatureClass
IFeatureBuffer newFeatureBuffer = featureClass.CreateFeatureBuffer();
IFeatureCursor fCursor = featureClass.Insert(false);
newFeatureBuffer.set_Value(indexOfAField, "someValue");
fCursor.InsertFeature(newFeatureBuffer);
fCursor.Flush();

The Insert() method of the IFeatureClass takes a boolean value that indicates the buffering
capability of the cursor. This capability can be used only during an edit session. Using buffering
makes it possible to store new features on the client side (cursor object) and load them in a bulk
mode to the server (geodatabase). This characteristic results in higher performance in comparison
with non-buffering insert cursors. Using the insert cursor’s Flush() method results in pushing a
new feature to the geodatabase. If a call to the Flush() method is missed, the cursor pushes all the
features before the cursor is destroyed (goes out of scope or the application releases any references to
the cursor).

c13.indd 418c13.indd 418 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Features ❘ 419

To sum up, an insert cursor provides a faster way of inserting a huge amount of features
in simple FeatureClasses. But when FeatureClasses implement custom behavior, such as
participation in topologies and geometric networks or custom class extensions, using an insert
cursor doesn’t provide signifi cant benefi ts. The real advantage of insert cursors can be obtained
using buffering.

With buffering enabled for an insert cursor, calling InsertFeature()doesn’t push the feature to
the geodatabase. Rather, it pushes the feature into the specifi c area in memory, which is called the
buffer. Features will remain in the buffer till the cursor’s Flush() method is called or the buffer
reaches its maximum capacity. Then all features in the buffer are written to the geodatabase. This
way of bulk loading outperforms using the fi rst approach of inserting new features. The next Try
It Out illustrates the use of an insert cursor. Note that buffering can be enabled during an edit
session.

TRY IT OUT Inserting New Features (NewFeatures.zip)

 1. Add a class to the FeatureDataManagement add-in solution. Name it City and defi ne members as
shown in the following code:

class City
 {
 //properties
 public string Name
 { get; set; }

 public long Population
 { get; set; }

 public decimal Area
 { get; set; }

 public double X
 { get; set; }

 public double Y
 { get; set; }

 public City(string name, long population, decimal area, double x, double y)
 {
 this.Name = name;
 this.Population = population;
 this.Area = area;
 this.X = x;
 this.Y = y;
 }
 }

 2. Add a new add-in component to your solution. Name it InsertNewFeatures, select Button as the
type of add-in, provide the information as shown in Figure 13-7, and click Finish.

c13.indd 419c13.indd 419 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

420 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

 3. Add references to ESRI.ArcGIS.Carto, ESRI.ArcGIS.Display, and ESRI.ArcGIS.Editor, and add
the following using directives at the top of the InsertNewFeatures.cs. fi le’s code window:

using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.DataSourcesGDB;
using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Geometry;
using System.Windows.Forms;
using ESRI.ArcGIS.Editor;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.ArcMapUI;

 4. You need to get to the FeatureClass in order to insert new features in it. So add the following code
in the InsertNewFeatures class’s OnClick() method:

 Type factoryType = Type.GetTypeFromProgID("esriDataSourcesGDB.
 FileGDBWorkspaceFactory");
 IWorkspaceFactory wsF = Activator.CreateInstance(factoryType) as
 IWorkspaceFactory;
 string fileGDBAddress = util.path + "\\" + util.fileGDBName;
 string fcName = util.featureClassName;
 //check the existence of the file geodatabase
 if (!System.IO.Directory.Exists(fileGDBAddress))
 {
 MessageBox.Show("there isn't a file geodatabase with the
 specified path and name");
 return;
 }
 IWorkspace ws = wsF.OpenFromFile(fileGDBAddress, ArcMap.Application.
 hWnd);

FIGURE 13-7

c13.indd 420c13.indd 420 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Features ❘ 421

 IFeatureWorkspace fws = ws as IFeatureWorkspace;
 IWorkspace2 ws2 = fws as IWorkspace2;
 if (ws2.get_NameExists(esriDatasetType.esriDTFeatureClass, fcName)
 == false)
 {
 MessageBox.Show(string.Format("The {0} FeatureClass doesn't
 exist in the {1} file geodatabase", fcName, util.fileGDBName));
 return;
 }

 //get the FeatureClass
 IFeatureClass fc = fws.OpenFeatureClass(fcName);

 5. After getting a reference to the FeatureClass, you need some sample data. Add the following code:

 //create list of major cities
 List<City> cities = new List<City>();
 cities.Add(new City("New York", 16500000, 1210, -74.0999, 40.7500));
 cities.Add(new City("Tokyo", 23650000, 2187, 139.8092, 35.6830));
 cities.Add(new City("Berlin", 5100000, 892, 13.3276, 52.5163));
 cities.Add(new City("Paris", 10000000, 105, 2.4328, 48.8815));

 6. In order to create a buffering insert cursor, you need to use the Editor extension and invoke the
StartEditing() method of the IEditor3 interface. The StartEditing() method requests
the IWorkspace input parameter. This shows that only one Workspace can be edited at a time.
Also, the FeatureLayer from the specifi ed Workspace must be in the active data frame; otherwise,
the call to StartEditing()will result in an error. So enter the following code to create a
FeatureLayer, and add it to the active data frame:

 IFeatureLayer fl = new FeatureLayerClass();
 fl.Name = fcName;
 fl.FeatureClass = fc;
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 map.AddLayer(fl);

 7. The rest of the code accesses the Editor extension, creates a buffering insert cursor, and fi nally
pushes all the buffered features into the geodatabase.

 int idxName = fc.Fields.FindField("Name");
 int idxPop = fc.Fields.FindField("Population");
 int idxArea = fc.Fields.FindField("Area");

 if (idxName < 0 || idxArea < 0 || idxPop < 0)
 { return; }
 UID editorExtension = new UIDClass();
 editorExtension.Value = "esriEditor.Editor";
 IEditor3 editor = ArcMap.Application.
 FindExtensionByCLSID(editorExtension) as IEditor3;
 editor.StartEditing(ws);

 IFeatureBuffer cityBuffer = fc.CreateFeatureBuffer();
 //Buffering can only be used during an edit session.
 IFeatureCursor fCursor = fc.Insert(true);
 foreach (City ct in cities)

c13.indd 421c13.indd 421 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

422 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

 {
 IPoint point = new PointClass();
 point.X = ct.X;
 point.Y = ct.Y;
 cityBuffer.Shape = point;

 cityBuffer.set_Value(idxName, ct.Name);
 cityBuffer.set_Value(idxPop, ct.Population);
 cityBuffer.set_Value(idxArea, ct.Area);
 IRowSubtypes cityST = cityBuffer as IRowSubtypes;
 cityST.InitDefaultValues();
 fCursor.InsertFeature(cityBuffer);
 }

 fCursor.Flush();
 editor.StopEditing(true);
 MessageBox.Show("All features inserted successfully");
 System.Runtime.InteropServices.Marshal.ReleaseComObject(fCursor);

 int refsLeft = 0;
 do
 {
 refsLeft = System.Runtime.InteropServices.Marshal.
 ReleaseComObject(wsF);
 }
 while (refsLeft > 0);
 mxdoc.ActiveView.Refresh();

 8. Add the button to the toolbar and enjoy it (run your code and test it in ArcMap).

How It Works

In this example, you used the insert cursor during an edit session to insert new features. When creat-
ing new features in ArcGIS for Desktop applications, the default values and subtypes are automati-
cally set. When features are created in code, the default values and subtypes are not set automatically.
In other words, a call to the CreateFeature() or CreateFeatureBuffer() method doesn’t set the
default value for fi elds that have them. At this point, the IRowSubtypes interface comes into play. The
IRowSubtypes interface is the primary interface for working with default values and subtypes for any
dataset that supports them. The InitDefaultValues() method populates fi elds with the specifi ed
default values and subtypes at the time features are created.

Modifying Existing Features

In general, you can modify existing features in one of two ways. The fi rst way is to use the Store()
and Delete() methods, which are implemented by the IRow interface. In other words, the feature itself
performs the update or delete. The following code illustrates updating features using a search cursor:

 //featureClass variable is an instance of IFeatureClass
 int idxName = featureClass.Fields.FindField("Name");

 IQueryFilter qF = new QueryFilterClass();

c13.indd 422c13.indd 422 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Features ❘ 423

 qF.WhereClause = "\"Name\" <> \'New York\'";

 IFeatureCursor fCursor = featureClass.Search(qF, false);
 IFeature city = fCursor.NextFeature();
 while (city != null)
 {
 city.Value[idxName] = "New " + city.Value[idxName];
 city.Store();
 city = fCursor.NextFeature();
 }

The following code demonstrates the use of the Delete() method with a search cursor:

 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = "\"Name\" <> \'New York\'";

 IFeatureCursor fCursor = featureClass.Search(qF, false);
 IFeature city = fCursor.NextFeature();
 while (city != null)
 {
 city.Delete();
 //there is no need to call Store() after delete
 city = fCursor.NextFeature();
 }

When using search cursors to update or delete features, the recycling parameter must always be set
to false.

The second way to modify features is by using an update cursor. The update cursors can use
recycling when there is no need to update more than one feature at once. This kind of cursor
provides better performance in comparison with a non-recycling search cursor.

 //featureClass variable is an instance of IFeatureClass
 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = "\"Name\" <> \'New York\'";
 IFeatureCursor fCursor = featureClass.Update(qF, true);
 IFeature city = fCursor.NextFeature();
 while (city != null)
 {
 city.set_Value(idxName, "New " + city.Value[idxName]);
 fCursor.UpdateFeature(city);
 city = fCursor.NextFeature();
 }

For deleting features, update cursors provide the DeleteFeature() method. But the most effi cient
method for deleting a huge amount of features in fi les or personal geodatabases is to use the
DeleteSearchedRows() method, which is defi ned by the ITable interface. But when a FeatureClass
is in an ArcSDE geodatabase, the most effi cient method for deleting numerous features is to use a
search cursor.

 //featureClass variable is an instance of IFeatureClass
 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = "\"Name\" <> \'New York\'";
 ITable table = feeatureClass as ITable;
 table.DeleteSearchedRows(qF);

In the next Try It Out, you create a domain, assign it to a fi eld, and then update features.

c13.indd 423c13.indd 423 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

424 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

TRY IT OUT Modifying Existing Features (ModifyFeatures.zip)

 1. Add a new add-in component to your solution. Name it ModifyFeatures, select Button as the type
of add-in, provide the information as shown in Figure 13-8, and click Finish.

FIGURE 13-8

 2. Enter the following using directives at the top of the ModifyFeature.cs. fi le’s code window:

using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.DataSourcesGDB;
using System.Windows.Forms;

 3. Add the following code to the ModifyFeatures class’s OnClick() method:

try
 {
 //creating a domain
 Type factoryType = Type.GetTypeFromProgID("esriDataSourcesGDB.
 FileGDBWorkspaceFactory");
 IWorkspaceFactory wsF = Activator.CreateInstance(factoryType) as
 IWorkspaceFactory;
 string fileGDBAddress = util.path + "\\" + util.fileGDBName;
 if (!System.IO.Directory.Exists(fileGDBAddress))
 {
 MessageBox.Show("there isn't a file geodatabase with the
 specified path and name");
 return;
 }
 //define CodedValue Domain
 ICodedValueDomain codedDomain = new CodedValueDomainClass();
 codedDomain.AddCode(1, "Is Capital");

c13.indd 424c13.indd 424 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Features ❘ 425

 codedDomain.AddCode(0, "Is not Capital");
 IDomain capitalDomain = codedDomain as IDomain;
 capitalDomain.Name = "CapitalDomain";
 capitalDomain.FieldType = esriFieldType.esriFieldTypeSmallInteger;
 capitalDomain.SplitPolicy = esriSplitPolicyType.esriSPTDuplicate;
 capitalDomain.MergePolicy = esriMergePolicyType.esriMPTAreaWeighted;

 //add domain to geodatabase
 IWorkspace ws = wsF.OpenFromFile(fileGDBAddress, ArcMap.Application.
 hWnd);
 IWorkspaceDomains2 wsD = ws as IWorkspaceDomains2;
 wsD.AddDomain(capitalDomain);

 //add field and assign domain
 IFeatureWorkspace fws = ws as IFeatureWorkspace;
 IFeatureClass fc = fws.OpenFeatureClass(util.featureClassName);

 //create a new field
 IFieldEdit2 field = new FieldClass();
 field.Name_2 = "status";
 field.Type_2 = esriFieldType.esriFieldTypeSmallInteger;
 field.DefaultValue_2 = 0;
 field.Domain_2 = capitalDomain;
 fc.AddField(field);

 //update features
 int idxStatus = fc.Fields.FindField("status");
 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = "\"Name\" <> \'New York\'";

 IFeatureCursor fCursor = fc.Update(qF, true);
 IFeature city = fCursor.NextFeature();
 while (city != null)
 {
 city.set_Value(idxStatus, 1);
 fCursor.UpdateFeature(city);
 city = fCursor.NextFeature();
 }
 //release cursor
 System.Runtime.InteropServices.Marshal.ReleaseComObject(fCursor);

 //release all the references to singleton object (WorkspaceFactory)
 int refsLeft = 0;
 do
 {
 refsLeft = System.Runtime.InteropServices.Marshal.
 ReleaseComObject(wsF);
 }
 while (refsLeft > 0);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

 4. Add the button to the toolbar and test its functionality.

c13.indd 425c13.indd 425 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

426 ❘ CHAPTER 13 FEATURE DATA MANAGEMENT

How It Works

Because domains are defi ned at the Workspace level, they can be used by various fi elds in different
FeatureClasses or tables. You can add or delete domains using the IWorkspaceDomains interface,
which is implemented by the Workspace class.

SUMMARY

This chapter explains some basic but common topics of vector geospatial data management. The
ArcGIS platform supports many formats, but geodatabase is ArcGIS’s native format. Besides being
the native format for handling geospatial data, the geodatabase is the common model for working
with all types of geospatial data. Whether your geospatial data is a simple CAD drawing or a
complex FeatureClass with custom behavior in an ArcSDE geodatabase, all of them are treated
using the geodatabase model in ArcObjects. This characteristic indicates the extensibility and high
quality of ArcObjects. The next and fi nal chapter of the book is devoted to deployment.

EXERCISES

 1. What is the best method for deleting a huge number of features?

 2. Which is faster for updating geospatial data: a non-recycling search cursor or a recycling update

cursor?

 3. How it is possible to get a reference to supported spatial reference systems in ArcGIS through

ArcObjects?

You will fi nd the answers to these exercises in this book’s appendix.

c13.indd 426c13.indd 426 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 427

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Primary

interfaces for

working with

geospatial data

The primary interfaces for working with geospatial data using the geodatabase

model are IWorkspaceFactory and IWorkspace. The IWorkspaceFactory

interface is implemented by the WorkspaceFactory Abstract Class. Based

on the type and format of geospatial data, there are diff erent subclasses of

WorkspaceFactory CoClasses that developers can use to work with diverse

types of geospatial data. The IWorkspace interface is implemented by the

Workspace class. Workspace is a container of geospatial and non-geospatial

data and elements. A folder containing shapefi les, a folder containing a toolbox,

a fi le geodatabase, and an ArcSDE geodatabase are all Workspace objects.

Singleton objects

in ArcObjects

Singleton objects are objects which have only one instance. In other words,

any call to a constructor of a singleton object (using the new keyword) will

return a reference to an existing object. After instantiation, they are available

to all objects in the application. Using singleton COM objects in the similar way

to normal objects in .NET might result in unexpected errors. For this reason,

using ArcObjects singleton objects requires careful memory management.

In ArcObjects programming, the System.Activator class must be used

to instantiate, and the System.Runtime.InteropServices.Marshal or

ESRI.ArcGIS.ADF.ComReleaser classes should be used for releasing the

references of singleton objects. For this reason, you need to know the GUID of

the singleton object to be able to use the Activator class. All subclasses of

WorkspaceFactory are singleton objects.

Buff ering insert

cursors

With buff ering enabled for an insert cursor, calling the InsertFeature()

method of an insert cursor doesn’t push the feature to the geodatabase. Rather,

it pushes the feature into the buff er. Features will remain in the buff er till the

cursor’s Flush() method is called or the buff er reaches its maximum capacity.

Then all features in the buff er are written to the geodatabase. This method of

bulk loading outperforms using the approach of inserting new features using

CreateFeature() and Store() methods.

Recycling update

cursors

There are two ways of modifying existing features: use of search cursors

and use of update cursors. The search cursor can use recycling in a search

operation, but when using search cursors for update or delete operations,

the recycling parameter must always be set to false (a non-recycling search

cursor). Update cursors can use recycling when there is no need to update more

than one feature at once. This kind of cursor (a recycling update cursor) provides

better performance in comparison with non-recycling search cursors.

c13.indd 427c13.indd 427 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

c13.indd 428c13.indd 428 25/02/13 12:25 PM25/02/13 12:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Topics in ArcObjects
Programming and Deployment

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Wiring ArcObjects events

 ➤ Creating application extensions

 ➤ Sharing state and functionality between components

 ➤ Desktop Add-Ins deployment

 ➤ Custom component deployment

 ➤ Custom actions with custom component deployment

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at www.wrox.com/remtitle
.cgi?isbn=1118442547 on the Download Code tab. The code is in the Chapter14 folder and
is individually named according to the names throughout the chapter.

Congratulations! The fact that you’re reading this chapter probably means you now have
a solid understanding of ArcObjects programming. The next step in ArcGIS for Desktop
applications development is to release your Desktop Add-In or custom component to your
target audience.

Desktop Add-Ins and custom components have two distinct models for deployment. In this
chapter, you learn how to deploy your customization using both models. In addition to
deployment, this chapter deals with sharing state and functionality as well as developing
application extensions.

14

c14.indd 429c14.indd 429 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://www.wrox.com/remtitle.cgi?isbn=1118442547
http://WROX.COM
http://wrox.com
http://www.it-ebooks.info/

430 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

SHARING STATE AND FUNCTIONALITY

BETWEEN COMPONENTS

Almost every ArcObjects project (add-in or custom component) needs inter-component
communication for changing state or c alling methods of other components in the project. As an
example, suppose you have two buttons (btn1 and btn2) and a combo box (cbo) in your add-in
project and you want to populate the combo box with every click of the fi rst button (btn1).
ComboBox provides an Add() method to add items; however, this method is defi ned as protected
(with the protected access modifi er) in the add-in framework, so it is not possible for Button to
call this method directly. No protected member of an add-in component (even add-in components of
the same type, such as two combo boxes) can be accessed outside of that component.

NOTE Access modifi er keywords (like public, private, and protected) are
discussed in the “Object-Oriented Programming in Action” section of Chapter 3.

The solution is to use the static members inside ArcObjects components. In Chapter 13, you use
static members to share state. So the fi rst step to enable inter-component communication in this
example is to defi ne a static member of type cbo inside the cbo class, which is initialized in the
class’s constructor. Then the Add() method is wrapped using a static method that can be called
from other components in the same add-in project. Ponder the following code, which illustrates this
process in action:

public class cbo : ESRI.ArcGIS.Desktop.AddIns.ComboBox
 {
 //private static member
 private static cbo s_comboBox;

 //constructor
 public cbo()
 {
 s_comboBox = this;
 }
 //static method (wrapper method)
 internal static void AddItem(string caption)
 {
 s_comboBox.Add(caption);
 }

 }

Because the AddItem() method is defi ned using the internal access modifi er keyword, it is
accessible by all classes in the Add-In project. As a result, the btn1 class can easily use this method.
.

public class btn1 : ESRI.ArcGIS.Desktop.AddIns.Button
 {
 public btn1()
 {

c14.indd 430c14.indd 430 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sharing State and Functionality between Components ❘ 431

 }

 public override void OnClick()
 {
 cbo.AddItem(DateTime.Now.ToLongTimeString());
 }
 }

Also, if you want to access properties of other components in the Add-In project, you can easily
create a getter method (also known as an accessor method) for the desired property. For example,
if you want to see which item is selected in the previous combo box, you can defi ne another static
member and another static method that returns the defi ned static variable. The value for this
variable must be set in the appropriate method based on the type of the Add-In component. The
following code illustrates this process for the combo box:

public class cbo : ESRI.ArcGIS.Desktop.AddIns.ComboBox
 {
 //private static
 private static cbo s_comboBox;

 private static string s_selectedTime;

 //constructor
 public cbo()
 {
 s_comboBox = this;
 }

 internal static void AddItem(string caption)
 {
 s_comboBox.Add(caption);
 }
 protected override void OnSelChange(int cookie)
 {
 //if user selects nothing
 if (cookie == -1)
 { return; }
 //since Add-In types are singleton, this and s_cbo point to the same
 //thing
 //get selected item (caption)
 s_selectedField = this.GetItem(cookie).Caption;
 }

 //getter (accessor) method
 internal static string GetSelectedTime()
 {
 return s_selectedTime;
 }
 }

In a similar manner, you can use this getter (or accessor) method in other components in your
Add-In project, as shown in the following code:

c14.indd 431c14.indd 431 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

432 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

public class btn2 : ESRI.ArcGIS.Desktop.AddIns.Button
 {
 public btn2()
 {
 }

 public override void OnClick()
 {
 MessageBox.Show(cbo.GetSelectedTime());
 }
 }

This powerful and straightforward way of inter-component communication can be used in Add-In
as well as custom component development.

NOTE The Add-In framework provides an even easier way to access a
specifi c component in an Add-In project. When you develop add-ins, you can use
the static AddIn.FromID() method to get a reference to an existing instance of
a component within your Add-In project. The following code gets a reference to
the combo box’s members without defi ning any static member. In order to
use this code snippet, you must enter the using ESRI.ArcGIS.Desktop.AddIns
directive at the top of your class fi le.

public class btn1 : ESRI.ArcGIS.Desktop.AddIns.Button
 {
 public btn1()
 {
 }

 public override void OnClick()
 {
 var theCombobox = AddIn.FromID<cbo>(ThisAddIn.IDs.cbo);
 theCombobox.AddItem(DateTime.Now.ToLongTimeString());
 }
 }

EVENT HANDLING IN ARCOBJECTS

ArcGIS for Desktop applications are Windows applications; as a result, they are event-driven.
As you might remember, events are actions initiated by either a user or the system. In the .NET
Framework, a special type is used for communication between event-sender and event-receiver
delegates.

The delegate holds a reference to a method. The method is an event handler and implements logic
for responding to the initiated action. For this reason, the method must have the signature defi ned
by the event.

c14.indd 432c14.indd 432 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handling in ArcObjects ❘ 433

Up to this point in this book, all the events are fi red directly by the user by clicking a button, for
example. Events can be fi red by ArcObjects, too; for example, when a user adds layers to the active
Data Frame, the AddItem event is fi red by the Map object.

Event handling in ArcObjects is simple. First you have to get a reference to an instance of an object
that implements a certain event interface. Then you create an event handler method and register
the method with the object that raises the event. This process is called event wiring. The signatures
of events are defi ned in event interfaces. All the members of the event interfaces are of type event.
For this reason, other objects are needed in order to handle events that are notifi ed using event
interfaces.

NOTE Event interfaces are denoted by fi lled lollipops in object model diagrams.
They are also known as outbound interfaces. Because they have an Events suf-
fi x (for example, IActiveViewEvents), you can easily fi nd them in object model
diagrams. Note that in .NET they are suffi xed with _Event (IActiveViewEvents_
Event). Another important tip is that they are hidden in Visual Studio. In other
words, outbound interfaces in .NET (such as IActiveViewEvents_Event) are not
displayed when you code in Visual Studio, but you can use them in C# or VB.

Suppose that you want to develop a combo box that shows all the FeatureLayers in the active Data
Frame. In addition, you want the combo box to automatically update itself based on the addition
or removal of layers in the Data Frame. In this case, you have to resort to the ItemAdded and
ItemDeleted events of the IActiveViewEvents_Event interface. This interface is implemented by a
Map object. So you use the Map object to get a reference to IActiveViewEvents_Event and implement
two event handlers. Since you need this functionality from the beginning of the combo box’s lifetime,
you have to put the event wiring logic in the combo box’s constructor. The following code illustrates
this procedure:

public class cboFeatureLayers : ESRI.ArcGIS.Desktop.AddIns.ComboBox
 {
 IMxDocument mxdoc;
 IMap map;

 //constructor of combobox
 public cboFeatureLayer()
 {
 mxdoc = ArcMap.Application.Document as IMxDocument;
 map = mxdoc.FocusMap;
 //get a reference to an object that implements specific event interface
 IActiveViewEvents_Event avEvent = map as IActiveViewEvents_Event;
 //register and insert event handlers with appropriate events
 avEvent.ItemAdded += new
 IActiveViewEvents_ItemAddedEventHandler(LayerAdded);
 avEvent.ItemDeleted += new
 IActiveViewEvents_ItemDeletedEventHandler(LayerDeleted);
 }

 protected override void OnSelChange(int cookie)

c14.indd 433c14.indd 433 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

434 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 {
 }
 protected override void OnUpdate()
 {
 }

 //event handlers
 void LayerAdded(object item)
 {
 this.Clear();
 for (int i = 0; i < map.LayerCount; i++)
 {
 if (map.Layer[i] is IFeatureLayer)
 {
 this.Add(map.Layer[i].Name);
 }
 }
 }
 void LayerDeleted(object item)
 {
 this.Clear();
 for (int i = 0; i < map.LayerCount; i++)
 {
 if (map.Layer[i] is IFeatureLayer)
 {
 this.Add(map.Layer[i].Name);
 }
 }
 }

 }

As you can see from this code, the signature and logic of both event handlers are the same, so you
can specify a single method to handle both events. Ponder the following code, which illustrates the
updated constructor method of the preceding code:

 //constructor of combobox
 public cboFeatureLayer()
 {
 mxdoc = ArcMap.Application.Document as IMxDocument;
 map = mxdoc.FocusMap;
 //get a reference to an object that implements specific event interface
 IActiveViewEvents_Event avEvent = map as IActiveViewEvents_Event;
 //register event handlers with appropriate events
 avEvent.ItemAdded += new
 IActiveViewEvents_ItemAddedEventHandler(LayerAdded);
 avEvent.ItemDeleted += new
 IActiveViewEvents_ItemDeletedEventHandler(LayerAdded);
 }

You can fi nd the source code for this example in the ListenerCombobox.zip fi le in the download
fi les for this chapter on Wrox.com.

c14.indd 434c14.indd 434 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://Wrox.com
http://www.it-ebooks.info/

Application Extension ❘ 435

NOTE Usually diff erent classes that implement an event interface fi re the
same event in diff erent situations. For example, many CoClasses such as Map,
PageLayout, MapFrame, and Legend implement the IActiveViewEvents_Event
interface. As you have seen, the Map CoClass fi res the ItemAdded event when
a layer is added to a map. The PageLayout CoClass fi res ItemAdded when a
legend, MapFrame, and graphics are added to the page layout. In addition,
implementation of an event interface does not mean that all events of the
event interface must be fi red by a class. As another example, the Map CoClass
implements the IActiveViewEvents_Event interface but it doesn’t fi re the
FocusMapChanged event.

APPLICATION EXTENSION

To this point in this chapter, you have seen how to share state between various components in an
Add-In project as well as handling ArcObjects events. You can handle various events in different
components in an add-in. However, this makes your code less maintainable because at some point
you need to duplicate your written code in another component. Even worse, in some situations you
need to reengineer the whole project just to make sure your add-in or custom component works
in the desired manner. To avoid these pitfalls, you can use application extensions (extensions for
short).

The ArcGIS platform has, in addition to the core products, lots of extensions to provide additional
capabilities that can be evaluated freely or purchased. For example, ArcGIS 3D Analyst is a valuable
extension for visualizing, analyzing, and managing three-dimensional geospatial data. ArcGIS for
Desktop application users can enable or disable available extensions in the Extensions window by
selecting Customize ➪ Extensions.

ArcObjects developers can develop application extensions and add them to the Extensions window.
Extensions are special types of components with the sole purpose of managing other types of
components in an add-in or custom component project. Extensions provide a central point of
coordination — through extensions it is possible to handle application events in just one place and
manage the state of all other components in an ArcObjects add-in or custom component project.

NOTE Always develop your add-in or custom component project with
extensibility and future development in mind. To make this happen, always use
an extension component in your project to manage and coordinate other types
of components. With little eff ort, you will end up with a more prestigious and
well-designed add-in or custom component.

Extensions are not limited to Desktop Add-Ins. You can create application
extensions using the custom component model of ArcObjects development
(extending ArcObjects templates).

c14.indd 435c14.indd 435 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

436 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

In the following Try It Out, you learn how to manage and coordinate three add-in components
using an extension to create a simple extension. This extension provides a toolbar with two combo
boxes and a button. The fi rst combo box displays all the FeatureLayers in the active Data Frame.
Using this combo box, a user can select a FeatureLayer. The second combo box displays numerical
fi elds of the selected FeatureLayer. Clicking the button creates a bar chart of the selected fi eld.

TRY IT OUT Creating a Simple Application Extension (SimpleAppExtension.zip)

 1. Create a new ArcMap Add-In project. Name the solution SimpleAppExtension. In the Add-Ins
Wizard, provide the necessary information in the Welcome page, and then click the Next button.
Select Extension as the type of add-in, provide the information shown in Figure 14-1, and click
Finish. Make sure that you check the Show in Extension Manager check box.

FIGURE 14-1

 2. Add a new Add-In component to your project. Name it cboFields and choose ComboBox as the
type of Add-In component. Confi gure the combo box as illustrated in Figure 14-2. Click the
Finish button. This combo box will hold the names of numerical fi elds.

c14.indd 436c14.indd 436 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Application Extension ❘ 437

 3. Since you need to access the functionality of this combo box from other components in this
Add-In project, you have to use the techniques described in previous sections of this chapter. In
summary, you need to fi nd out which item (name of a fi eld) in this combo box the user selects.
In addition, this combo box must provide the means for adding and clearing items. The following
code illustrates the implementation of the cboFields.cs class:

public class cboFields : ESRI.ArcGIS.Desktop.AddIns.ComboBox
 {
 private static cboFields s_cboFields;
 private static string s_selectedField;

 public cboFields()
 {
 s_cboFields = this;
 }
 //override methods
 protected override void OnUpdate()
 {
 //the state of this Add-In component must be controlled by the extension
 }
 protected override void OnSelChange(int cookie)
 {
 //if user selects nothing
 if (cookie < 0)
 { return; }

FIGURE 14-2

c14.indd 437c14.indd 437 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

438 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 s_selectedField = this.GetItem(cookie).Caption;
 }

 //for sharing functionality
 internal static string GetSelectedField()
 {
 return s_selectedField;
 }

 internal static void ClearAllItems()
 {
 s_selectedField = null;
 s_cboFields.Clear();
 }

 internal static void AddItem(string fieldName)
 {
 s_cboFields.Add(fieldName);
 }
 }

Note that the state of this component, along with other components, must be managed in an
extension class. You do this in later steps of this Try It Out.

 4. Add a new Add-In component to your project. Name it cboFeatureLayers and choose ComboBox
as the type of Add-In component. Confi gure the combo box as illustrated in Figure 14-3. Click
the Finish button. This combo box will hold the names of FeatureLayers in the active Data Frame.

FIGURE 14-3

c14.indd 438c14.indd 438 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Application Extension ❘ 439

 5. For this combo box, you need to determine which item (name of a FeatureLayer) in this combo
box is selected by the user. In addition, this combo box must provide the means for adding and
clearing items. More importantly, when a user clicks on any item (name of a FeatureLayer) the
numerical fi elds of the selected FeatureLayer must be added to the cboFields combo box. So add a
reference to ESRI.ArcGIS.Carto and ESRI.ArcGIS.Geodatabase using the Add ArcGIS Reference
command inside the Solution Explorer window, and then type the following using directives at
the top of cboFeatureLayers.cs:

using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.ArcMapUI;

The following code illustrates the implementation of the cboFeatureLayers.cs class:

public class cboFeatureLayers : ESRI.ArcGIS.Desktop.AddIns.ComboBox
 {
 private static cboFeatureLayers s_cboFeatureLayers;
 private static string s_selectedFeatureLayer;

 public cboFeatureLayers()
 {
 s_cboFeatureLayers = this;
 }

 protected override void OnUpdate()
 {
 //the state of this Add-In component must be controlled by the extension
 }

 protected override void OnSelChange(int cookie)
 {
 if (cookie < 0)
 { return; }
 s_selectedFeatureLayer = this.GetItem(cookie).Caption;

 //populate cboFields
 cboFields.ClearAllItems();
 IMxDocument mxdoc = ArcMap.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;

 for (int i = 0; i < map.LayerCount; i++)
 {
 if (map.Layer[i] is IFeatureLayer &&
 map.Layer[i].Name == s_selectedFeatureLayer)
 {
 IFeatureClass fClass = ((map.Layer[i]) as
 IFeatureLayer).FeatureClass;
 for (int j = 0; j < fClass.Fields.FieldCount; j++)
 {
 switch (fClass.Fields.Field[j].Type)
 {
 case esriFieldType.esriFieldTypeDouble:
 case esriFieldType.esriFieldTypeInteger:
 case esriFieldType.esriFieldTypeSingle:
 case esriFieldType.esriFieldTypeSmallInteger:

c14.indd 439c14.indd 439 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

440 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 cboFields.AddItem(fClass.Fields.Field[j].Name);
 break;
 }
 }
 //since selected featureLayer is found there is no need to
 //continue
 break;
 }
 }
}
 //for sharing functionality
 internal static string GetSelectedFeatureLayer()
 {
 return s_selectedFeatureLayer;
 }

 internal static void ClearAllItems()
 {
 s_selectedFeatureLayer = null;
 s_cboFeatureLayers.Clear();
 }

 internal static void AddItem(string featureLayerName)
 {
 s_cboFeatureLayers.Add(featureLayerName);
 }
 }

As you might have guessed, wiring events for adding or removing FeatureLayers to an active
Data Frame will be implemented in an extension class.

 6. Go to the extension class fi le (SimpleExtension.cs) and type the following using directives at
the top of the code fi le:

using ESRI.ArcGIS.esriSystem;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Desktop.AddIns;
using ESRI.ArcGIS.ArcMapUI;

Then delete all methods inside SimpleExtension except its empty constructor.

Your extension class should be similar to the following code snippet:

public class SimpleExtension : ESRI.ArcGIS.Desktop.AddIns.Extension
 {
 public SimpleExtension()
 {
 }
 }

 7. You are going to use this extension as a central point to coordinate the state of other components
in your Add-In project. So you need a static variable of type SimpleExtension to get the state of
the extension.

You also want to handle ItemAdded and ItemDeleted events, which are defi ned on the
IActiveViewEvents_Event interface. This interface is implemented by the Map class. So you

c14.indd 440c14.indd 440 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Application Extension ❘ 441

need a variable of type IMap that can be accessed inside the SimpleExtension class. Add the fol-
lowing lines of code to the SimpleExtension class at the top of the class block and outside any
method:

 private IMap map;
 private static SimpleExtension s_extension;

 8. A few blocks of code must be called by other methods in the extension. For the purpose of
reusability, you can group them into some helper methods. Enter the following methods in your
SimpleExtension class:

 // helper methods
 private void InitializeExtension()
 {
 if (s_extension == null || this.State != ExtensionState.Enabled)
 { return; }

 // event wiring (registering and attaching event handlers to events)
 IMxDocument mxdoc = ArcMap.Document as IMxDocument;
 map = mxdoc.FocusMap;
 IActiveViewEvents_Event activeviewEvents = map as
 IActiveViewEvents_Event;
 activeviewEvents.ItemAdded += new
 IActiveViewEvents_ItemAddedEventHandler(LayerAddedOrDeleted);
 activeviewEvents.ItemDeleted += new
 IActiveViewEvents_ItemDeletedEventHandler(LayerAddedOrDeleted);

 FillcboFeatureLayers();
 }
 private void LayerAddedOrDeleted(object Item)
 {
 map = ArcMap.Document.FocusMap;
 FillcboFeatureLayers();
 }
 private void FillcboFeatureLayers()
 {
 cboFields.ClearAllItems();
 cboFeatureLayers.ClearAllItems();

 // Loop through the layers in the map and add the layer's name to the
 //combo box.
 for (int i = 0; i < map.LayerCount; i++)
 {
 if (map.Layer[i] is IFeatureLayer)
 {
 cboFeatureLayers.AddItem(map.Layer[i].Name);
 }
 }
 }
 private void UnInitializeExtension()
 {
 if (s_extension == null)
 return;

 // Detach event handlers

c14.indd 441c14.indd 441 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

442 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 IActiveViewEvents_Event activeviewEvents = map as
 IActiveViewEvents_Event;
 activeviewEvents.ItemAdded -= LayerAddedOrDeleted;
 activeviewEvents.ItemDeleted -= LayerAddedOrDeleted;
 activeviewEvents = null;

 cboFields.ClearAllItems();
 cboFeatureLayers.ClearAllItems();
 }

 9. At this point, you have grouped most of the logic of your extension in the preceding helper
methods. So you invoke these helper methods in the methods that are actually called by
ArcObjects and users when certain methods such as OnStartup() and OnShutDown() are called.

First you are going to implement the OnStartup() method of your extension. Inside the
SimpleExtension class and outside any method, type protected override followed by a space
and you will see that Visual Studio displays all methods that can be overridden. Nearly at
the end of the list, select OnStartup() and press Enter. The OnStartup() method is the place
where you must initialize your extension and wire it to any desired event. This method is called
by ArcObjects when the extension is loaded. Enter the following code snippet that illustrates the
OnStartup() method:

protected override void OnStartup()
 {
 s_extension = this;
 InitializeExtension();
 }

 10. In contrast to OnStartup(), OnShutdown() is called when the extension is unloaded by
ArcObjects. This situation usually happens when a user closes any of the ArcGIS for Desktop
applications. So OnShutdown()is the place for cleanup. Enter the following code in the
SimpleExtension class:

protected override void OnShutdown()
 {
 UnInitializeExtension();
 map = null;
 s_extension = null;
 base.OnShutdown();
 }

 11. Because your extension is displayed in the Extension Manager window, you have to
provide implementation for two other methods that are called by ArcObjects when users
toggle the extension in the Extension Manager window. Add the following methods in the
SimpleExtension class:

 protected override bool OnSetState(ExtensionState state)
 {
 this.State = state;
 if (state == ExtensionState.Enabled)
 {
 InitializeExtension();
 }
 else
 {

c14.indd 442c14.indd 442 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Application Extension ❘ 443

 UnInitializeExtension();
 }
 return true;
 }

 protected override ExtensionState OnGetState()
 {
 return this.State;
 }

In addition to toggling the extension in the Extension Manager window, when the extension
is loaded, OnSetState() will be called by ArcObjects. Note that regardless of the value of the
state parameter, the OnSetState() method should always return true. If it returns false,
the extension will be locked and it cannot be activated or deactivated.

 12. It is time to create methods for coordination of the state of other components in this Add-In
project. Because your Add-In extension is a simple one, you just need to provide code for enabling
or disabling the other components. Add the following methods at the end of your extension class
(SimpleExtension.cs):

 //static method
 //for managing and coordinating the state of other components
 internal static bool IsExtensionEnabled()
 {
 if (s_extension == null)
 {
 GetTheExtension();
 }

 if (s_extension == null)
 {
 return false;
 }

 if (s_extension.State == ExtensionState.Enabled)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 private static SimpleExtension GetTheExtension()
 {
 // Call FindExtension method to create the s_extension
 // if the extension has been checked in the Extensions window

 UID extensionID = new UIDClass();
 extensionID.Value = ThisAddIn.IDs.SimpleExtension;
 ArcMap.Application.FindExtensionByCLSID(extensionID);
 return s_extension;
 }

c14.indd 443c14.indd 443 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

444 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

When the extension is enabled beforehand in ArcMap, s_extension is null (because
OnStartup() is not called). If you start ArcMap, the extension is not loaded even if it was
enabled in the Extension Manager window. In this case, the extension is loaded when you enable
its toolbar or you open the Extension Manager window. This way, the start-up time for ArcGIS
for Desktop applications is reduced signifi cantly. The extensions that load only when they are
needed are called Just-In-Time (JIT) extensions.

The FindExtensionByCLSID() function can load all the extensions available in ArcGIS for
Desktop applications (standard and JIT extensions). So you use the FindExtensionByCLSID()
method to access the State property of the s_extension variable.

 13. You will use the IsExtensionEnabled() method of the SimpleExtension class to manage the
state of other components in your Add-In project. So change the OnUpdate() methods of the two
combo boxes to match the following code:

 protected override void OnUpdate()
 {
 //the state of this Add-In component must be controlled by the extension
 this.Enabled = SimpleExtension.IsExtensionEnabled();
 }

 14. Add another Add-In component to your project. Name it CreateBarChart and select Button as the
type of component. Confi gure the button as shown in Figure 14-4 and click Finish.

FIGURE 14-4

 15. At the moment, you can only implement the button’s OnUpdate() method. In fact, all the
components in this Add-In project have the same implementation for this method. So enter
the following code in CreateBarChart.cs to synchronize the state of the button with the state
of the extension:

c14.indd 444c14.indd 444 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Application Extension ❘ 445

 protected override void OnUpdate()
 {
 this.Enabled = SimpleExtension.IsExtensionEnabled(); }

You are going to implement the button’s OnClick() method later in this Try It Out.

 16. Add an Add-In component container. Name it SimpleExtensionToolbar and select Toolbar as the
type of command container. Change the settings of the toolbar to match Figure 14-5.

At this point, you have a chance to test the functionality of the extension. So run the code and
add some feature layers to your map. You should see the extension (SimpleExtension) in the
Extensions window. Remember that it is not fi nished yet and you have to provide logic to create
the bar chart and implement the button’s OnClick() event.

FIGURE 14-5

 17. In order to create a bar chart for the selected fi eld, you are going to use the ZedGraph component.
ZedGraph is an open source .NET control for creating fl exible charts and graphs. You can
download it freely from http://sourceforge.net/projects/zedgraph. After downloading
it, add a reference to ZedGraph.dll using the Add Reference command in the Solution Explorer
window. This time use the Browse tab to fi nd the ZedGraph assembly.

 18. You need to add the ZedGraph control to your Toolbox dockable window in Visual Studio.
Right-click somewhere in the Toolbox dockable window and select Choose Items from the
context menu. As shown in Figure 14-6, in the Choose Toolbox Items window under the
.NET Framework Components tab, click the Browse button to point to the .dll fi le you have
downloaded for ZedGraph. By doing this, you have added ZedGraph to the list of components

c14.indd 445c14.indd 445 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://sourceforge.net/projects/zedgraph
http://www.it-ebooks.info/

446 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

that can be used in Visual Studio. To add
ZedGraph as a control (that can be used
in Windows Forms projects) you need to
fi nd the ZedGraphControl item (under the
.NET Framework Components tab), check
the check box next to it, and then click
OK. The ZedGraphControl is added to the
Visual Studio Toolbox.

 19. Add a Windows Form to your project
and name it frmBarchart. Double-click
the ZedGraphControl to add an instance
of it to frmBarchart. In the Properties
window, rename it to zgc. There is no
need to set its location and size; the
control will be confi gured in code. In the
Solution Explorer window, double-click
on frmBarchart to open it in the designer. Type the following using directives at the top of the
frmBarchart.cs fi le:

using ZedGraph;
using ESRI.ArcGIS.Geodatabase;
using ESRI.ArcGIS.Carto;
using ESRI.ArcGIS.Desktop;
using ESRI.ArcGIS.ArcMapUI;
using ESRI.ArcGIS.esriSystem;

 20. This form will have two public properties for the selected fi eld and selected FeatureLayer. Based
on the values of these properties, a FeatureCursor will populate two arrays of values and names
for all features in the FeatureClass associated with the FeatureLayer. Use the primary display fi eld
of FeatureLayer for the feature names. Add the following code in the frmBarchart class — it
contains public properties and three methods for getting data and creating a bar chart:

public string ValueFieldName { get; set; }
 public string FeatureLayerName { set; get; }

 private void chartFormResize()
 {
 zgc.Location = new Point(10, 10);
 zgc.Size = new Size(ClientRectangle.Width - 20,
 ClientRectangle.Height - 20);
 }
 private void CreateBarchart(ZedGraphControl zgc)
 {
 GraphPane pane = zgc.GraphPane;
 pane.Fill = new Fill(Color.MistyRose);
 pane.Title.Text = string.Format("Bar Chart for {0} Field of {1}",
 this.ValueFieldName, this.FeatureLayerName);
 pane.XAxis.Title.Text = "Features";
 pane.YAxis.Title.Text = "Values for " + this.ValueFieldName;

FIGURE 14-6

c14.indd 446c14.indd 446 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Application Extension ❘ 447

 pane.XAxis.Type = AxisType.Text;

 string[] nameOfFeatures = null;
 double[] valuesOfFeatures = null;
 FillDataArrays(out nameOfFeatures, out valuesOfFeatures);

 BarItem bar = pane.AddBar(this.ValueFieldName, null, valuesOfFeatures,
 Color.Red);
 pane.XAxis.Scale.TextLabels = nameOfFeatures;
 pane.XAxis.MajorGrid.IsVisible = true;
 pane.XAxis.MajorGrid.PenWidth = 2f;
 pane.YAxis.MajorGrid.IsVisible = true;

 pane.Legend.IsVisible = false;
 pane.Chart.Fill = new Fill(Color.White, Color.Blue, 45f);
 //draw the chart
 zgc.AxisChange();
 }
 private void FillDataArrays(out string[] nameOfFeatures, out double[]
valuesOfFeatures)
 {
 try
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IFeatureLayer fLayer = null;
 for (int j = 0; j < map.LayerCount; j++)
 {
 if (map.Layer[j].Name == this.FeatureLayerName && map.Layer[j]
 is IFeatureLayer)
 {
 fLayer = map.Layer[j] as IFeatureLayer;
 break;
 }
 }
 if (fLayer == null)
 {
 nameOfFeatures = null; valuesOfFeatures = null;
 return;

 }

 IFeatureClass fClass = fLayer.FeatureClass;
 int idxNameField = fClass.Fields.FindField(fLayer.DisplayField);
 int idxValueField = fClass.Fields.FindField(this.ValueFieldName);

 int numberOfFeatures = fClass.FeatureCount(null);
 nameOfFeatures = new string[numberOfFeatures];
 valuesOfFeatures = new double[numberOfFeatures];

 IFeatureCursor fCursor = fClass.Search(null, true);
 IFeature feature = fCursor.NextFeature();
 int i = 0;
 while (feature != null)
 {

c14.indd 447c14.indd 447 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

448 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 if (feature.Value[idxNameField] != null)
 {
 nameOfFeatures[i] = Convert.ToString(feature.
 Value[idxNameField]);
 }
 else
 {
 nameOfFeatures[i] = "";
 }

 if (feature.Value[idxValueField] != null)
 {
 valuesOfFeatures[i] = Convert.ToDouble(feature.
 Value[idxValueField]);
 }
 else
 {
 valuesOfFeatures[i] = 0;
 }

 i++;
 feature = fCursor.NextFeature();
 }
 //releasing the Cursor object
 System.Runtime.InteropServices.Marshal.ReleaseComObject(fCursor);
 }
 catch (Exception ex)
 {
 nameOfFeatures = null; valuesOfFeatures = null;
 MessageBox.Show(ex.Message);
 }
 }

 21. Double-click on the form to make Visual Studio create the stub code for the Load event handler
and call the CreateBarchart() and chartFormResize() methods in this event handler.

 private void frmBarchart_Load(object sender, EventArgs e)
 {
 CreateBarchart(zgc);
 chartFormResize();
 }

 22. Next, handle the resize event of frmBarchart. Go to the Design window. From the list of events
in the Properties window, double-click the Resize event, and type the following code as the
handler for this event:

private void frmBarchart_Resize(object sender, EventArgs e)
 {
 chartFormResize();
 }

NOTE By default, the Properties window displays a list of the properties of the
selected object, such as a Windows Form. If you want access to the list of events,
you need to press the Events button in the Properties window.

c14.indd 448c14.indd 448 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Application Extension ❘ 449

 23. The fi nal step in building this add-in is to provide logic for the button’s OnClick() method. Go to
the CreateBarchart.cs class fi le and implement the OnClick() method to match the following
code:

protected override void OnClick()
 {
 frmBarchart chartForm = new frmBarchart();
 chartForm.FeatureLayerName = cboFeatureLayers.
 GetSelectedFeatureLayer();
 chartForm.ValueFieldName = cboFields.
 GetSelectedField();
 if (chartForm.ValueFieldName == null || chartForm.
 FeatureLayerName == null)
 {
 string errorMsg = "Please select a FeatureLayer
 and a Field";
 System.Windows.Forms.MessageBox.Show(errorMsg);
 return;
 }

 chartForm.ShowDialog();
 }

 24. Run your project. In ArcMap, select Extensions from the Customize menu. You can see your
simple extension (Simple Bar Chart) listed in the available extensions. If it is not enabled, enable it
by checking its check box in the Extensions window. See Figure 14-7.

 25. Again from the Customize menu, select the Toolbars item and fi nd and display the Simple Bar
Chart toolbar. Add some layers to your active Data Frame and test the functionality of this
simple extension. You should get something like Figure 14-8 if you use the States feature class of
TemplateData.gdb and the POP 2000 fi eld.

FIGURE 14-7 FIGURE 14-8

c14.indd 449c14.indd 449 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

450 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

How It Works

This is the longest Try It Out in this book, and the most complete one. Since you don’t check the
Auto-load check box when you add the extension, your extension is a JIT extension (refer to
Figure 14-1). You can also change or see this attribute in the XML confi guration fi le of the add-in
(Config.esriaddinx). The type of extension is controlled by the autoLoad attribute in the Extension
element in the confi guration fi le. If the value of the autoLoad attribute is true, the extension will
be a standard extension, meaning that the extension is loaded when an ArcGIS for Desktop applica-
tion starts and unloaded when the application closes. The following XML fragment illustrates a JIT
extension:

<Extension id="AmirianDevExperts_SimpleApplicationExtension_
SimpleExtension" class="SimpleExtension" productName="Simple Bar
Chart" showInExtensionDialog="true" autoLoad="false">

The default value for the autoLoad attribute is false; for this reason, if you uncheck the Auto-load
check box in the ArcGIS Add-Ins Wizard, this attribute doesn’t appear in the Extension element in the
confi guration fi le. JIT extensions need more code to handle the state of the extension, but they provide
faster startup performance in comparison with standard extensions.

ADD-IN DEPLOYMENT

As mentioned in Chapter 2, developing and customizing ArcGIS for Desktop applications using
the Add-In model provides some advantages when compared with other methods of developing
and extending ArcGIS for Desktop applications. One of the most important advantages of the
Add-In model is its deployment approach. In fact, deployment of an add-in is almost the same as
distributing any type of ordinary fi le (such as an *.mp3 fi le) and includes copying and pasting the fi le
without the need for administrative privileges or alteration of the system registry.

Preparing for Release

Before copying and pasting the add-in, you need to prepare it for release. Up to this point in the
development phase, you needed the debug capability of Visual Studio. Now, because you are going
to release your add-in to its users, you are in deployment phase and there is no need for the debug
capability. The only step required for preparing your add-in is changing the confi guration of the
Add-In solution from Debug to Release.

Look at the contents of the Add-In’s Visual Studio solution bin folder (for example,
D:\SimpleAddinExtension\SimpleAddinExtension\bin). You will fi nd two other folders:
Debug and Release. These two folders are created by Visual Studio for Debug and Release modes,
respectively. Take a look inside the Release folder and you will see that the folder is empty because
the active confi guration of all types of solutions and projects (including Desktop Add-In) is Debug

c14.indd 450c14.indd 450 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Add-In Deployment ❘ 451

by default. For this reason, each time you run your code, Visual Studio will build an add-in inside
the Debug folder of your add-in’s bin folder. Look at the contents of the Debug folder to meet your
add-in.

To change the confi guration of your Add-In
solution, change the confi guration of
your solution from Debug to Release using
the Solution Confi gurations combo box
in the Standard toolbar of Visual Studio, as
shown in Figure 14-9.

Alternatively, you can right-click on your
Add-In solution in the Solution Explorer window and choose Properties. In the Solution Property
Pages, if you click on Confi guration Properties ➪ Confi guration node in the left pane, as shown in
Figure 14-10, you can change the confi guration of the solution.

FIGURE 14-9

FIGURE 14-10

After changing the Solution Confi guration from Debug to Release, press F6 or select Build Solution
from the Build menu to create the output of your solution (the Add-In fi le with an .esriAddIn
extension).

Since the Visual Studio in Release mode removes all the debug symbols from code and performs
some code optimizations, if you build the add-in solution in Release mode, the output add-in (in
the Release folder) is smaller than the same add-in in Debug mode.

c14.indd 451c14.indd 451 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

452 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

NOTE In addition to solutions, projects have confi gurations that can be Debug
or Release. Note that if you have set the confi guration of your solution to Debug,
changing the confi guration mode of a project from Debug to Release doesn’t
build your add-in in the Release folder, but the reverse is not true. In other words,
solutions have control of the confi guration mode of all containing projects. For
this reason, you need just to change the confi guration mode of the solution when
preparing it for release. You can see the confi guration of projects in the Build tab
of the project’s Property page (see Figure 14-11).

.

After changing the project confi guration to Release, the debugging capability of
Visual Studio is no longer available, even if you have some breakpoints in your
code and execution of the code reaches those breakpoints.

Add-In File Structure

Your add-in is a fi le with the .esriAddIn fi le extension. This single fi le is a zipped folder that
contains all your Add-In components and resources. Change the fi le extension of your add-in to
.zip and you will see the actual contents of the add-in. Most add-ins contain two folders (Images
and Install) and at least one Config.xml fi le. The Config.xml fi le contains add-in metadata and its
content is exactly the same as the Config.esriaddinx fi le you have worked with in Visual Studio.
In fact, Config.esriaddinx is renamed to Config.xml during the Build process.

The images of your Add-In components are stored as .png fi les inside the Images folder.
The Install folder contains your Add-In assembly (as a .dll fi le). Other resources are
also copied to the Install folder of your add-in if you have used them. For example,
in the case of SimpleApplicationExtension, the Install folder of the add-in includes
SimpleApplicationExtension.dll and ZedGraph.dll. All other folders inside the Install folder
contain satellite assemblies for ZedGraph.

FIGURE 14-11

c14.indd 452c14.indd 452 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Add-In Deployment ❘ 453

NOTE Satellite assemblies are resources for diff erent languages and locales.
They contain localized resources and are loaded by the .NET Framework. The
.NET Framework will locate and load a suitable satellite assembly that matches
the culture and locale of the user. For more information on localization in the
.NET Framework, consult the .NET documentation.

Distributing and Installing an Add-In

One nice feature of Add-Ins is that in order to distribute them, there is no need to build a setup or
installation package for them. When you want to share your developed add-in, all you need to do is
copy it to media like a USB fl ash drive, e-mail it, or even upload it to a website.

On the user’s machine, to make the Add-In fi les discoverable by ArcGIS for Desktop applications,
he or she needs to put them in well-known folders. In other words, Add-In fi les are automatically
discovered and loaded by ArcGIS for Desktop applications from well-known folders and plugged
into the desktop applications at runtime.

By default, based on a user’s operating system, a user has the following local well-known folder:

 ➤ Windows 7 and Vista: <Windows Installation Drive>:\Users\<your user name>\

Documents\ArcGIS\AddIns\Desktop10.x

 ➤ Windows XP: <Windows Installation Drive>:\Document and Settings\<your user
name>\My Documents\ArcGIS\AddIns\Desktop10.x

In addition to the default local well-known folder, the user can specify other folders as well-known
folders on his or her machine using the Add-In Manager window in ArcMap. To open the Add-In
Manager window, select Customize ➪ Add-In Manager.

Besides the local well-known folders, the user can also specify any shared folder in a network as
a shared well-known folder. By doing this, the add-in in the shared well-known folder can be used
by anyone who has access to that folder through the network.

To install an add-in, copy it to a well-known folder. This can be done manually or automatically by
using the Esri ArcGIS Add-In Installation utility. For the manual approach, users can simply copy
and paste the Add-In fi le into a well-known folder. Figure 14-12 displays the ListenerComboBox.
esriAddIn, which is copied to the default local well-known folder. When you manually copy and
paste add-ins, if two or more add-ins have the same name, a name confl ict will occur.

FIGURE 14-12

c14.indd 453c14.indd 453 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

454 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

If a user double-clicks the Add-In fi le, the Esri ArcGIS Add-In Installation utility pops up, gets
the metadata of the add-in, and displays this information to the user. This information can be used
by users or organizations for making decisions about the installation and usage of the add-in.
If the user decides to install the add-in, the Esri ArcGIS Add-In Installation utility creates a subfolder
under the default well-known folder of the user’s machine and then copies the add-in into the
subfolder. The name of the subfolder is the GUID of the add-in which is defi ned as the content of the
AddInID element inside the confi guration fi le, shown in the following code:

<Name>SimpleApplicationExtension</Name>
 <AddInID>{ea68dcf0-8ea8-4e87-8e8d-f168f786ed22}</AddInID>

Figure 14-13 displays the default well-known folder after installation of the
SimpleApplicationExtension Add-In.

FIGURE 14-13

Creating a subfolder named with the Add-In’s GUID prevents naming confl icts. Always use the Esri
ArcGIS Add-In Installation utility to install the add-ins.

As mentioned previously, it is possible to specify a shared folder on the network as a local well-
known folder using the Add-In Manager window. Using a network shared well-known folder is
a better approach for distributing add-ins for multiple users within an organization. In this case,
add-ins are loaded when the ArcGIS for Desktop applications of the users run; if a newer version
of an add-in is needed, one can easily overwrite the existing version in a shared well-known folder.
Next time, when the users restart ArcGIS for Desktop applications, they can make use of the newer
version.

As stated in the beginning of this section, deployment of an add-in includes copying and pasting
the fi le without the need for administrative privileges or alteration of the system registry. This
doesn’t mean that administrators don’t have enough control of using add-ins. In fact, the system
administrator can restrict usage of add-ins.

There are three different security options, ranging from most secure to least secure, for loading
add-ins in the Add-In Manager window, under the Options tab. Note that the user can change
these options freely. The administrator can restrict the setting made by a user through the system
registry. Log into the system as an administrator to change the Windows Registry. Then fi nd
the BlockAddIns value. This value is located inside HKEY_LOCAL_MACHINE\SOFTWARE\ESRI\
Desktop10.x\Settings for 32-bit Windows machines and inside HKEY_LOCAL_MACHINE\
SOFTWARE\Wow6432Node\ESRI\Desktop10.x\Settings for 64-bit Windows machines.
Figure 14-14 displays the BlockAddIns value for 64-bit Windows machines.

c14.indd 454c14.indd 454 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Add-In Deployment ❘ 455

FIGURE 14-14

The administrator can set the value of BlockAddIns to one of the values shown in Table 14-1.

TABLE 14-1: Values of BlockAddIns Key

VALUE PURPOSE

0 Load all add-ins (least secure option)

1 Load digitally signed add-ins

2 Load just Esri add-ins

3 Load Esri add-ins (just like value 2) and load add-ins from the administrator folders

4 Do not load any add-in at all

Note that the user can only use the Add-In
Manager window to change the security to
something more secure than the setting made
by the administrator. By default, the data of
the BlockAddIns value is 0. As a result, the
user can change the security of the add-in
to any level. Suppose that the administrator
changes the data of BlockAddIns to 2. At
this setting, ArcGIS for Desktop applications
just loads Esri add-ins and there is nothing to
be changed in the Options tab of the Add-In
Manager window. In other words, the other
two options in the Add-In Manager window
are disabled (see Figure 14-15).

FIGURE 14-15

c14.indd 455c14.indd 455 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

456 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

If BlockAddIns is set to 3, add-ins can be
loaded if they were published by Esri or
they are inside the administrator folders.
The administrator folders are ordinary
folders that contain add-ins and are defi ned
in the registry using the AddInFolders
key under the Settings key. To specify
an administrator folder, go to the system
registry and, based on your Windows
operating system version, fi nd the Settings
subkey. Right-click the Settings key
and from the context menu, select
New ➪ Key to insert a key beneath the
Settings key. Rename the new key to AddInFolders. Figure 14-16 illustrates this procedure for
creating an AddInFolders key in 32-bit Windows.

With AddInFolders selected in the left pane, right-click in the right pane and insert New ➪ String
Value. Double-click the string value and enter the physical address of the folder. You can add as
many administrator folders as you need. Administrator folders make it easier to control the security
of add-ins.

CUSTOM COMPONENT DEPLOYMENT

One of the most important features of custom component development is fl exibility in deployment.
In fact, deployment of a custom component is almost the same as distributing and installing any
type of software and includes creating setup packages, registering components, creating folders, and
so forth on the host machine. For this reason, installing a custom component needs administrative
privileges and modifi cation of the system registry.

Fortunately, most of the registration and modifi cation can be done using software tools designed for
creating software packages and installers such as InstallShield, Smart Install Maker, and the Setup
project template in Visual Studio. In the following Try It Out, fi rst you create a very simple custom
component, and then you learn to create and customize a setup project for custom components.

TRY IT OUT Creating a Very Simple Custom Component
(VerySimpleCustomComponent.zip)

 1. Create a new ArcMap Class Library project (from the left pane, select ArcGIS ➪ Extending
ArcObjects). Name the solution VerySimpleCustomComponent. In the ArcGIS Project Wizard,
add references to ESRI.ArcGIS.Carto and ESRI.ArcGIS.ArcMapUI, and then click Finish.

 2. Delete the Class1.cs fi le, right-click on your project in the Solution Explorer window, and
choose New Item from the Add submenu. In the left pane of the Add New Item window, expand

FIGURE 14-16

c14.indd 456c14.indd 456 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Component Deployment ❘ 457

the ArcGIS node and select Extending ArcObjects. Select
Base Command and name it RemoveSelectedLayer. Click the
Add button. In the ArcGIS New Item Wizard Options, select
Desktop ArcMap Command (as shown in
Figure 14-17), and then click OK.

 3. Add the following using directive at the top of the
RemoveSelectedLayer.cs fi le:

using ESRI.ArcGIS.Carto;

Then modify the class constructor to match the following
code snippet:

public RemoveSelectedLayer()
 {
 base.m_category = "ArcGISBook";
 base.m_caption = "Removes the Selected FeatureLayer";
 base.m_message = "Removes the selected FeatureLayer in TOC";
 base.m_toolTip = "Removes the selected FeatureLayer in TOC";
 base.m_name = "RemovesFeatureLayerinTOC_SimpleCustomComponent";

 try
 {
 string bitmapResourceName = GetType().Name + ".bmp";
 base.m_bitmap = new Bitmap(GetType(), bitmapResourceName);
 }
 catch (Exception ex)
 {
 System.Diagnostics.Trace.WriteLine(ex.Message, "Invalid Bitmap");
 }
 }

 4. Add a few lines of code in the OnClick() method to remove the selected item (which will be null
if no item is selected) from the Table Of Contents in ArcMap if it is of type IFeatureLayer in the
OnClick() method.

public override void OnClick()
 {
 IMxDocument mxdoc = m_application.Document as IMxDocument;
 IActiveView activeView = mxdoc.ActiveView;
 IMap map = mxdoc.FocusMap;
 IContentsView contentsView = mxdoc.CurrentContentsView;
 object selectedItem = contentsView.SelectedItem;

 if (selectedItem is IFeatureLayer)
 {
 map.DeleteLayer(selectedItem as ILayer);
 activeView.Refresh();
 contentsView.Refresh(null);
 }
 }

FIGURE 14-17

c14.indd 457c14.indd 457 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

458 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 5. Add a new item to your project, select Base Toolbar as the type of component, and name it
SimpleCustomComponentToolbar. Then click the Add button. In the ArcGIS New Item Wizard
Options, select Desktop ArcMap as shown in Figure 14-18, and click OK.

 6. Modify the constructor of the toolbar to place the button as shown in the following code snippet:

public CustomComponentToolbar()
 {
 AddItem("VerySimpleCustomComponent.RemoveSelectedLayer");
 }

 7. Change the caption of the toolbar to
CustomComponentToolbar. For this task, you can fi nd the
Caption property and change its value. Press F5 to run and
test your code.

How It Works

In this Try It Out, you created a very simple custom component.
This custom component can be added to any toolbar or menu of
ArcMap using the Customize window. In other words, since the
RemoveSelectedLayer command is registered in the MxCommands
category, it can be used in ArcMap. You can fi nd all the available
categories using the ArcGIS Component Category Registrar window.
From the Project menu, select Add Component Category. As you can
see in Figure 14-19, the command (RemoveSelectedLayer) is registered in the MxCommands category. As
a result, the mentioned command will be shown in the Customize dialog box of the ArcMap.

FIGURE 14-18

FIGURE 14-19

If the custom component works in its designed way, change the solution confi guration to Release and
rebuild it.

c14.indd 458c14.indd 458 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Component Deployment ❘ 459

Creating an Installer for a Custom Component

Usually software tools that make installers and packages are used to create an .msi (Microsoft
Installer) fi le for a custom component. In order to create an .msi fi le, use the Setup and Deployment
template. In the next Try It Out, you learn the typical procedure for creating an installer package for
a custom component.

TRY IT OUT Creating an Installation Package for Very Simple Custom Component
(InstallationVerySimpleCustomComponent.zip)

 1. Open your solution (VerySimpleCustomComponent.sln), then in the Solution Explorer window,
right-click on the solution and choose New Project from the Add submenu.

 2. Expand Other Project Types and select Visual Studio Installer from the Setup and Deployment
node. Then select Setup Project and name it SimpleSetup, as shown in Figure 14-20. Click OK.

FIGURE 14-20

c14.indd 459c14.indd 459 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

460 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 3. With the SimpleSetup project selected in Solution
Explorer, click the File System Editor button at the top of
the Solution Explorer window, as shown in Figure 14-21,
to display the fi le system on the target machine.

 4. Right-click on the Application Folder node and choose
Project Output from the Add submenu. Next, select the
primary output of the VerySimpleCustomComponent,
and then press OK.

 5. At this moment, Visual Studio checks the dependencies of
VerySimpleCustomComponent.dll (the primary output)
and adds all the needed .dll fi les to the Application folder on the target machine. Because this
custom component will be used inside ArcGIS for Desktop applications, all added Esri assemblies
and binary fi les were installed on the target machine previously. For this reason, you don’t need
them at all. In addition, distribution of Esri assemblies and binaries is not in line with copyright
law and violates the Esri license agreement. So select all Esri assemblies, and from the Properties
window, select Exclude to remove them from the setup project (that is, change Exclude from False
to True).

 6. The fi nal step in packaging a custom component is to register it on the target machine. Those
familiar with COM or .NET registration are familiar with RegSvr32.exe or RegAsm.exe for
registration of a .dll fi le. Prior to version 10.0 of ArcGIS, Esri followed the same model of
registration, but starting with ArcGIS 10.0, all custom components must be registered using the
ESRIRegAsm.exe utility. Your setup package must use this utility to register custom components.

How can you fi nd the ESRIRegAsm.exe
utility on the target machine? Look in your
registry for the subkey ArcGIS (HKEY_
LOCAL_MACHINE\SOFTWARE\ESRI\ArcGIS
for 32-bit Windows and HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\ESRI\

ArcGIS for 64-bit Windows). It has a value
of InstallDir and string data of the
folder which contains ESRIRegAsm
.exe along with other utilities that ship
with ArcGIS. Figure 14-22 illustrates this
subkey in the system registry of a 32-bit
Windows machine.

So, for example on your book author’s computer, the complete path of the utility will be:
D:\Program Files\Common Files\ArcGIS\bin\ESRIRegAsm.exe.

NOTE Based on the type of operating system (64-bit or 32-bit), you will fi nd this
subkey in a slightly diff erent path. The registry also contains a lot of other useful
information that can be used in ArcObjects programming.

FIGURE 14-21

FIGURE 14-22

c14.indd 460c14.indd 460 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Component Deployment ❘ 461

 7. For registering custom components at install time, you need to use a special type of Visual Studio
class. Right-click your VerySimpleCustomComponent project and select New Item from the
Add submenu. Expand Visual C# Items, then select the General node. Find Installer Class in the
middle pane, name it InstallCustomComponent.cs as shown in Figure 14-23, and click the Add
button.

FIGURE 14-23

 8. When the Installer class is added to the project, select it in the Solution Explorer window and
press F7 to go to code view. Alternatively, you can click on the “Click here to switch to code
view” link to go to code view.

 9. Add the following using directives at the top of the Installer class:

using System.Diagnostics;
using Microsoft.Win32;

In this class, you are going to defi ne what methods will handle events such as install and unin-
stall. So type public override and a space in the Installer class to display a list of methods
that can be overridden. Select Install and then click the Enter button. Override the Uninstall
method for the Installer class too. In both methods you will fi nd the path to the ESRIRegAsm
.exe utility. Register or unregister it on the target machine using the appropriate switches as
shown in the following code. The following code registers and unregisters your component on
32-bit and 64-bit Windows systems:

 public override void Install(IDictionary stateSaver)
 {
 base.Install(stateSaver);
 //based on 64 or 32 bit it is different
 string processorArchitecture = Environment.
 GetEnvironmentVariable("PROCESSOR_ARCHITEW6432");

c14.indd 461c14.indd 461 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

462 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 bool Is64bit = !string.
 IsNullOrEmpty(processorArchitecture);

 string EsriRegAsm = null;
 //find the folder containing ESRIRegAsm.exe
 string utilityInstallationPath = null;
 if (Is64bit)
 {
 RegistryKey regkey = Registry.LocalMachine.
 OpenSubKey(@"SOFTWARE\Wow6432Node\ESRI\ArcGIS");
 utilityInstallationPath = regkey.
 GetValue("InstallDir").ToString();
 regkey.Close();
 }
 else
 {
 RegistryKey regkey = Registry.LocalMachine.
 OpenSubKey(@"SOFTWARE\ESRI\ArcGIS");
 utilityInstallationPath = regkey.
 GetValue("InstallDir").ToString();
 regkey.Close();
 }
 EsriRegAsm = utilityInstallationPath +
 @"bin\ESRIRegAsm.exe";

 //get from custom action
 string nameOfDll = "VerySimpleCustomComponent.dll";
 string installationFolder = this.Context.
 Parameters["installationDir"];
 string fullPathOfDll = installationFolder + nameOfDll;

 string switches = " /p:Desktop /s";
 string args = "\"" + fullPathOfDll + "\"" + switches;

 //execute using Process class
 int exitCode = ExecuteCommand(EsriRegAsm, args, 10000);
 }

 public override void Uninstall(IDictionary savedState)
 {
 base.Uninstall(savedState);

 //based on 64 or 32 bit it is different
 string processorArchitecture = Environment.
 GetEnvironmentVariable("PROCESSOR_ARCHITEW6432");
 bool Is64bit = !string.
 IsNullOrEmpty(processorArchitecture);

 string EsriRegAsm = null;
 //find the folder containing ESRIRegAsm.exe
 string utilityInstallationPath = null;
 if (Is64bit)
 {

c14.indd 462c14.indd 462 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Component Deployment ❘ 463

 RegistryKey regkey = Registry.LocalMachine.
 OpenSubKey(@"SOFTWARE\Wow6432Node\ESRI\ArcGIS");
 utilityInstallationPath = regkey.
 GetValue("InstallDir").ToString();
 regkey.Close();
 }
 else
 {
 RegistryKey regkey = Registry.LocalMachine.
 OpenSubKey(@"SOFTWARE\ESRI\ArcGIS");
 utilityInstallationPath = regkey.
 GetValue("InstallDir").ToString();
 regkey.Close();
 }
 EsriRegAsm = utilityInstallationPath +
 @"bin\ESRIRegAsm.exe";

 string installationFolder = this.Context.
 Parameters["installationDir"];
 string nameOfDll = "VerySimpleCustomComponent.dll";
 string fullPathOfDll = installationFolder + nameOfDll;
 string switches = " /p:Desktop /u /s";

 string args = "\"" + fullPathOfDll + "\"" + switches;

 //execute using Process class
 int exitCode = ExecuteCommand(EsriRegAsm, args, 10000);
 }

 public static int ExecuteCommand(string exe, string
 arguments, int Timeout)
 {
 ProcessStartInfo ProcessInfo = new
 ProcessStartInfo(exe, arguments);
 ProcessInfo.CreateNoWindow = true;
 ProcessInfo.UseShellExecute = false;
 ProcessInfo.ErrorDialog = true;
 //execute the Process
 Process Process = Process.Start(ProcessInfo);
 Process.WaitForExit(Timeout);

 int ExitCode = Process.ExitCode;
 Process.Close();
 return ExitCode;
 }

You can access the installation path of a custom component on the target machine using the
Context.Parameters["installationDir"]; parameter. You see where to set this parameter
shortly. Now build your VerySimpleCustomComponent project.

c14.indd 463c14.indd 463 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

464 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 10. In the Solution Explorer window, while
you have selected the Setup project, click
the Custom Actions Editor button at the
top of the Solution Explorer window.
Right-click on the Install node and select
Add Custom Action. The Select Item in the
Project window appears. Go to Application
Folder and select Primary output from
VerySimpleCustomComponent (Active).
Add the same custom action to your
Uninstall node. Your Custom Actions
window should be similar to Figure 14-24.

 11. In order to get the installation path of
the custom component, select Primary
output from VerySimpleCustomCom-
ponent(Active) below the Install Custom
Action, and in the Properties window enter
/installationDir=“[TARGETDIR]\” as
shown in Figure 14-25.

 12. Set the same CustomActionData for the
Uninstall Custom Action. Build your
solution, then build your setup project and
test it by right-clicking the setup project
(SimpleSetup) in Solution Explorer and
selecting Install from the context menu.

How It Works

Because the VerySimpleCustomComponent project contains an Installer class, you could specify it as
the source of a custom action. In this Try It Out, you used custom actions to register custom components
using ESRIRegAsm.exe. This utility has different switches that should be used for different
purposes — for example, /p:Desktop is for the ArcGIS product, /u for unregister, and /s for silent mode.

In addition, based on your operating system (32- or 64-bit), the path of a utility which can be accessed
using a value in registry is different. In this Try It Out, you used the PROCESSOR_ARCHITEW6432 envi-
ronment variable to fi nd the type of operating system of the target machine. If you set the target plat-
form of your development to be .NET Framework 4.0, you could use the static property Environment
.Is64BitOperatingSystem for the same purpose.

FIGURE 14-24

FIGURE 14-25

c14.indd 464c14.indd 464 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 465

SUMMARY

Through the techniques you learned in this chapter, you know how to share state and functionality
in ArcObjects programming. Another important topic was wiring events in ArcObjects. You also
saw two different models of deployment under the hood of ArcObjects in this chapter. Through
these two different models of deployment, it is possible for you to distribute and publish your
custom component or add-in. Hopefully, distributing your custom component or add-in enables you
to sell a lot of copies and thus make some money!

Though this book mainly focuses on ArcMap and ArcCatalog, all other applications in the ArcGIS
for Desktop suite share a similar architecture based on ArcObjects. Through the skills you gained
in this book, you can put your knowledge of ArcObjects to work to make all sorts of .NET-based
customizations in ArcGIS for Desktop applications. Good luck with your future ArcObjects
projects.

EXERCISES

 1. What are outbound interfaces?

 2. Which utility must be used to register and unregister custom components in version 10.0 and

later of ArcGIS?

 3. How you can access the installation address of your custom component?

You will fi nd the answers to these exercises in this book’s appendix.

c14.indd 465c14.indd 465 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

466 ❘ CHAPTER 14 ADVANCED TOPICS IN ARCOBJECTS PROGRAMMING AND DEPLOYMENT

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Sharing state and functionality

between components

In order to enable inter-component communication, you can

use the static members inside ArcObjects components. So

the fi rst step is to defi ne a static member of type class inside

that class, which is initialized in the constructor. Then you add

static methods and properties to perform actions on the static

member.

Implementation of event

interfaces

Usually, diff erent classes that implement an event interface fi re

the same event in diff erent circumstances. For example, many

CoClasses, such as Map, PageLayout, and Legend, implement

the IActiveViewEvents_Event outbound interface. The

Map CoClass fi res the ItemAdded event when a layer is added

to a map. The PageLayout CoClass fi res ItemAdded when

a legend, MapFrame, and graphics are added to the page

layout. In addition, implementation of an event interface does

not mean that all events of the event interface must be fi red

by a class. As another example, the Map CoClass implements

the IActiveViewEvents_Event interface, but it doesn’t

fi re the FocusMapChanged event (which is a member of the

IActiveViewEvents_Event interface).

Application extensions Application extensions (or extensions for short) are a special

type of component with the sole purpose of management of

other types of components in an add-in or custom component

project. The extensions provide a central point of coordination.

Through extensions, it is possible to handle application events

in just one place and manage the state of all other components

of the ArcObjects project.

Add-in deployment In order to deploy an add-in, you need just one step:

Build the add-in project using Release confi guration.

Custom component

deployment

In order to deploy a custom component, you need the

following steps:

1. Build the custom component project using Release

confi guration.

2. Create the setup project.

3. Add an Installer class for registering the custom component

with ESRIRegAsm.exe.

c14.indd 466c14.indd 466 25/02/13 12:26 PM25/02/13 12:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Answers to Chapter Exercises

CHAPTER 1

Exercise 1 Solution

WFS enables platform-independent querying and retrieval of geospatial data over the web.
Unlike WMS, which returns an image of geospatial data for display purposes, WFS retrieves
encoded features that can be edited and spatially analyzed.

Exercise 2 Solution

File geodatabase provides the fastest possible performance among the three formats. In addi-
tion, it needs less disk space for storing geospatial data.

Exercise 3 Solution

Viewer, virtual globe, and professional.

CHAPTER 2

Exercise 1 Solution

The best way to create and automate geoprocessing workfl ows is using Python and ArcPy.
However, the real strength and power of Python and ArcPy is executing long and advanced
workfl ows.

Exercise 2 Solution

Desktop Add-Ins provide a declarative model for confi guration.

APPENDIX

bapp.indd 467bapp.indd 467 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

468 ❘ APPENDIX ANSWERS TO CHAPTER EXERCISES

Exercise 3 Solution

The full fl exibility can be achieved using ArcObjects SDK (extending ArcObjects). In fact, it is pos-
sible to really extend ArcObjects by implementing and extending interfaces, which cannot be done
using other methods of ArcGIS customization.

Exercise 4 Solution

Sharing customizations (such as newly created toolbars and commands) in the ArcObjects SDK
(Extending ArcObjects) requires creating an installation package. As a result, like any installation it
needs administrative permission. All the other models of development of ArcGIS for Desktop appli-
cations don’t need operating system administrator privileges.

CHAPTER 3

Exercise 1 Solution

The float and double data types have rounding errors. Because the decimal data type holds a
larger number of signifi cant digits than either the float or the double data types and it is not sub-
ject to rounding errors, it is best suited for scientifi c calculations inside C#.

Exercise 2 Solution

The System.Int32 or C# int data type provides the fastest possible performance for numeric
calculations.

Exercise 3 Solution

Generally, XAML (eXtensible Application Markup Language) is used to defi ne the user interface of
WPF applications. It is based on XML and because it is completely declarative, it enables the devel-
oper or designer of the user interface to describe the look and feel of the application without any
programming.

Exercise 4 Solution

To provide descriptive help about the purpose, parameters, and return value (if any) of methods, you
can use XML comments or documentation comments. In order to use the XML or documentation
comments, you need to type three slashes (///) before the method declaration to insert XML tags
for any methods. Then you should provide a description for every tag.

CHAPTER 4

Exercise 1 Solution

Method overloading and method overriding are part of the polymorphism principle. In addition,
operator overloading can be considered as another aspect of polymorphism.

bapp.indd 468bapp.indd 468 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 Answers to Exercises ❘ 469

Exercise 2 Solution

The System.String or C# string data type is a class. In other words, it is a reference type. In ref-
erence types, an assignment operator is used to copy the reference of an object, not the contents of
that object. But for the string type the mentioned operator is overloaded to provide value copying
functionality.

Exercise 3 Solution

The exception handling block in .NET consists of three related blocks: try, catch, and finally.
The finally block is optional. Code inside the finally block is executed whether the exception
occurs or not. This allows you to perform cleanup procedures, such as closing a stream, database
connection, or releasing any unmanaged resources.

Exercise 4 Solution

ArrayList objects are not strongly typed, meaning that you can add any data type to
a single ArrayList object. The fl exible nature of the ArrayList class causes many issues when you
want to evaluate data from an ArrayList. When data is added to the ArrayList, it is cast to a generic
System.Object type. In order to use items inside an ArrayList, you have to cast elements inside
the ArrayList back to their proper data type. This is called boxing and unboxing, which reduces
performance.

CHAPTER 5

Exercise 1 Solution

There are three types of classes: Abstract Class, Class, and CoClass. Abstract Classes cannot be
instantiated and used for organizing common states and behaviors. Unlike Abstract Classes, Classes
can have instances. The instances of Classes must be created by other classes (which can
be Classes or CoClasses). The third type of classes includes concrete classes or CoClasses that can
have instances. Unlike Classes, instances of CoClasses can be created using the new keyword.

Exercise 2 Solution

Type inheritance is a relationship between parent and child classes. In type inheritance, all the inter-
faces of a parent class are inherited by child classes.

Exercise 3 Solution

In interface inheritance, all the members of a parent interface are inherited by the child interfaces.

Exercise 4 Solution

The main entry points to ArcObjects development are the Application or m_application preset
and public variables in Visual Studio Desktop Add-Ins and Extending ArcObjects project templates,
respectively.

bapp.indd 469bapp.indd 469 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

470 ❘ APPENDIX ANSWERS TO CHAPTER EXERCISES

CHAPTER 6

Exercise 1 Solution

Inside .NET, any container class, such as collections and arrays, that implements the IEnumerable
or IEnumerator interfaces can provide the capability to iterate through its members using a foreach
construct. Since neither the IEnumerable nor the IEnumerator interface is implemented for collec-
tions and container classes inside ArcObjects, use of a foreach construct for ArcObjects is impossible
(without using some advanced features of .NET such as extension methods).

Exercise 2 Solution

By using the LayerCount property, only the fi rst level layers in the Table Of Contents window can
be accessed. On the other hand, by using the Layers property you can access all layers in the table
of contents. Although it is possible to use recursive coding to iterate through all layers inside a map
using the LayerCount property, it is always more effi cient and safer to use the Layers property and
IEnumLayer object to iterate through all layers.

Exercise 3 Solution

In previous versions of ArcObjects, IFeatureLayer was the main interface for working with vector-
based datasets like shapefi les. Via the FeatureClass property of that interface, actual geospatial
data can be accessed. In the current version of ArcObjects, the IFeatureLayer interface is super-
seded by IFeatureLayer2. As a result, the IFeatureLayer2 interface is the main interface for
working with vector-based datasets.

Exercise 4 Solution

Through the IDocumentInfo2 interface, some metadata like author, description, and keywords can
be saved in *.mxd fi les. For *.lyr fi les, the ILayerGeneralProperties interface has to be used for
providing lightweight metadata.

Exercise 5 Solution

To access all maps inside an MxDocument instance, the Maps property of the IMxDocument interface
must be used. As the name suggests, this property behaves like a collection and provides members
for iterating through each map.

To get to the active Data Frame (FocusMap), the IActiveView interface of the Map CoClass should
be used. The aforementioned interface provides the IsActive() method, which returns a bool value
indicating whether a Map instance has focus (the Data Frame is activated) or not.

CHAPTER 7

Exercise 1 Solution

The IFeatureWorkspace interface of the Workspace Class must be used in order to create a
FeatureDataset in all kinds of geodatabases. The FeatureDatasetName CoClass can be used for the
same purpose.

bapp.indd 470bapp.indd 470 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 Answers to Exercises ❘ 471

Exercise 2 Solution

Data stored in the string variable contains comma-separated values of all fi elds. Defi nitely incorrect!
As mentioned in Chapter 6, no .NET interfaces that support a foreach construct for collections
(IEnumerable and IEnumerator interfaces) are implemented for collections inside ArcObjects. For
this reason, the code won’t compile.

Exercise 3 Solution

The showInitially attribute determines whether or not a toolbar is shown automatically the fi rst
time after installation. Using the ArcGIS Add-Ins Wizard, if you select the Premier Toolbar check
box, the showInitially attribute will set to true.

CHAPTER 8

Exercise 1 Solution

Search cursors are used to return a subset of records for some read-only purposes, such as calculat-
ing a statistic or getting a count of records. Search Cursor objects are created using the Search()
method of the SelectionSet, FeatureClass, and Table Classes.

Exercise 2 Solution

The Field and Cursor properties must be set. After setting the Field and Cursor properties,
statistics of the specifi ed fi eld can be accessed through the Statistics property, which is of type
IStatisticsResults interface.

Exercise 3 Solution

The UID CoClass is usually used for referencing the GUID of interfaces and CoClasses in
ArcObjects as well as all your development in the ArcObjects system. For example, you can get to
the Dockable add-in called myDockableWin using the following code:

 UID dockableWinUID = new UIDClass();
 dockableWinUID.Value = ThisAddIn.IDs.myDockableWin;

Exercise 4 Solution

The following method performs the switch selection for the cities FeatureLayer. It simply gets the
current selected features and then uses the Combine() method to perform switch selection.

private void PerformSwitchSelection()
 {
 IMxDocument mxdoc = ArcMap.Application.Document as IMxDocument;
 IMap map = mxdoc.FocusMap;
 IEnumLayer enumLayer = map.Layers;
 ILayer layer = enumLayer.Next();
 IFeatureLayer FL = null;
 while (layer != null)
 {

bapp.indd 471bapp.indd 471 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

472 ❘ APPENDIX ANSWERS TO CHAPTER EXERCISES

 if (layer is IFeatureLayer && layer.Name == "cities")
 {
 FL = layer as IFeatureLayer;
 break;
 }
 layer = enumLayer.Next();
 }

 if (FL == null)
 { return; }

 IFeatureSelection fSelection = FL as IFeatureSelection;
 ISelectionSet selectedFeatures = fSelection.SelectionSet;
 ISelectionSet allFeatures = FL.FeatureClass.Select(null,
 esriSelectionType.esriSelectionTypeIDSet, esriSelectionOption.
 esriSelectionOptionNormal, null);

 ISelectionSet switchSelection = null;

 allFeatures.Combine(selectedFeatures,
 esriSetOperation.esriSetSymDifference, out switchSelection);

 fSelection.SelectionSet = switchSelection;
 mxdoc.ActiveView.Refresh();
 }

CHAPTER 9

Exercise 1 Solution

If set to true, the showInitially attribute of a specifi c toolbar causes the toolbar to be displayed
automatically the fi rst time after installation of the add-in.

<Toolbar id="Amirian,_DevExperts_GeometrySolution_GeometryToolbar"
 caption="GeometryToolbar" showInitially="true">

Exercise 2 Solution

The IRelationalOperator interface has several methods for examining the relationship between
two geometries. They return a boolean value indicating whether or not the desired relationship
exists. Contains(), Crosses(), Disjoint(), Equal(), Overlaps(), Touches(), and Within()
are some useful methods of the IRelationalOperator interface.

Exercise 3 Solution

In order to retain the geometry of all features in memory as separate objects, you need to use a non-
recycling cursor.

bapp.indd 472bapp.indd 472 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 Answers to Exercises ❘ 473

CHAPTER 10

Exercise 1 Solution

There is no default renderer for raster data. Based on the type of data in a raster dataset, ArcObjects
automatically determines the best renderer and uses that RasterRenderer to display the raster data-
set. For example, if a multiband satellite image is added to ArcMap, it uses RasterRGBRenderer to
display it as an RGB composite, and if a Digital Elevation Model (DEM) is added to ArcMap, it uses
RasterStretchColorRampRenderer to display it.

Exercise 2 Solution

The IGeoFeatureLayer interface is used for assigning a FeatureRenderer to a FeatureLayer. More
specifi cally, this interface has a Renderer property that is used to assign a FeatureRenderer to a
FeatureLayer.

Exercise 3 Solution

In order to perform classifi cation of a numeric fi eld, fi rst of all the histogram of the fi eld is needed.
In this case, IHistogram and ITableHistogram provide histogram data that include values and
frequencies.

The next step is to create an appropriate Classify instance and call its Classify() method to
create appropriate break points based on the data and its method of classifi cation. Four methods
of classifi cation correspond to four Classify subclasses.

Exercise 4 Solution

The ScaleDependentRenderer is available only to ArcObjects developers. Put simply, this type
of FeatureRenderer is an ordered collection of other types of FeatureRenderers. Users of ArcGIS
for Desktop applications could create multiple FeatureLayers and set the maximum and minimum
scales for them to provide what can be achieved through code and the ScaleDependentRenderer.

CHAPTER 11

Exercise 1 Solution

There are two categories of elements: GraphicElements and FrameElements. GraphicElements are
elements which can be added to both maps and PageLayouts and are not related to a map’s content.
In contrast to GraphicElements, FrameElements can be added only to PageLayouts and depend upon
a map’s content. In other words, FrameElements will dynamically change as the contents or proper-
ties of the map (Data View) change.

Exercise 2 Solution

The PDF export interface (in the ExportPDF CoClass) is able to create PDF fi les which con-
tain geospatial (attributes as well as location) information. Using the IExportPDF2 interface

bapp.indd 473bapp.indd 473 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

474 ❘ APPENDIX ANSWERS TO CHAPTER EXERCISES

makes it possible to include geospatial information in the exported fi le. In addition, in order
to implement security for a PDF fi le, you can set user and master passwords using the
IExportPDFPasswordSecurity interface.

Exercise 3 Solution

In order to determine the screen resolution, you can use the Resolution property of the
IDisplayTransformation interface. See the following code:

IDisplayTransformation dispTransformation = mxdoc.ActiveView.ScreenDisplay.
DisplayTransformation;
double screenResolution= dispTransformation.Resolution;

In addition, you can use the .NET specifi c method for determining the screen resolution. The fol-
lowing code demonstrates how to get the screen resolution in both X and Y directions:

 System.Windows.Forms.Form myForm = new System.Windows.Forms.Form();
 System.Drawing.Graphics myGraphic = myForm.CreateGraphics();
 double screenResolutionX = myGraphic.DpiX;
 double screenResolutionY = myGraphic.DpiY;

Note that in order to use the .NET–specifi c method, a reference to System.Windows.Forms is
needed.

CHAPTER 12

Exercise 1 Solution

The VarArray CoClass through the IVariantArray interface is used to handle parameters for geo-
processing tools. These types are defi ned in the System library of ArcObjects.

Exercise 2 Solution

The toolboxes can be saved in a folder or in any kind of geodatabase. In order to add a toolbox to a
geoprocessor object, when the toolbox is saved in a folder, you can simply call the geoprocessor
.AddToolbox() method.

IGeoProcessor2 gp = new GeoProcessorClass();
string fileSystemAddressOfToolbox = @"D:\testToolbox.tbx";
gp.AddToolbox(fileSystemAddressOfToolbox);
// configuring the parameters
//...
gp.Execute("BufferSelectKML", parameters, null);

You can get the same result using the alternative approach through the ToolboxWorkspaceFactory
CoClass.

 IWorkspaceFactory txWSF = new ToolboxWorkspaceFactoryClass();
 IWorkspace ws = txWSF.OpenFromFile(
 arcGISinstallationAddress + "\\" + arctoolboxAddress, ArcMap.
 Application.hWnd);
 IToolboxWorkspace toolboxWS = ws as IToolboxWorkspace;

bapp.indd 474bapp.indd 474 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 Answers to Exercises ❘ 475

 IGPToolbox gpToolbox = toolboxWS.OpenToolbox(toolbox);
 IGPTool gpTool = gpToolbox.OpenTool("MultipleRingBuffer");

 IGeoProcessor2 gp = new GeoProcessorClass();
 gp.AddOutputsToMap = true;
 gp.OverwriteOutput = true;
 // configuring the parameters
 //...

 gp.Execute(gpTool.Name, parameters, null);

As is true for tools in folders, you can access the tools inside a geodatabase using the
IToolboxWorkspace interface. The following code snippet illustrates how to execute a tool inside a
fi le geodatabase:

 string fileGDBAddress = @"D:\testFileGDB.gdb";
 string toolboxName = "testToolbox";
 string toolName = "simpleMultipleRingBuffer";

 IWorkspaceFactory fWF = new FileGDBWorkspaceFactoryClass();
 IWorkspace ws = fWF.OpenFromFile(fileGDBAddress, ArcMap.
 Application.hWnd);
 IToolboxWorkspace toolboxWS = ws as IToolboxWorkspace;

 //access to the toolbox
 IGPToolbox toolbox = toolboxWS.OpenToolbox(toolboxName);
 //get the tool or model
 IGPTool tool = toolbox.OpenTool(toolName);
 // configuring the parameters
 //...

 gp.Execute(gpTool.Name, parameters, null);

Exercise 3 Solution

When there is no connection between the input and output parameters of tools and you want to
execute tools in the background, you need to submit the tools to the geoprocessing queue using the
geoprocessor.ExecuteAsync() method. In this case, you can freely submit multiple unrelated
geoprocessing tools to the queue to be executed in the background in the same method. Note that,
since all custom tools are confi gured to be executed in the foreground by default, you have to change
this behavior prior to submitting them to the geoprocessing queue.

Exercise 4 Solution

If tools are running in the foreground, then there is only one tool running, which disables any inter-
action of the user with the user interface of ArcGIS for Desktop applications. In this case, there will
be no chance of starting an edit session.

If tools are running in the background process, then there is only one tool running and other tools
are waiting in the geoprocessing queue for their execution turn. In this case, while users can interact
with the user interface of ArcGIS for Desktop applications, they cannot start an edit session. This
means all the geoprocessing tools that have been submitted to the geoprocessing queue must be
executed completely or cancelled in order to begin an edit session.

bapp.indd 475bapp.indd 475 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

476 ❘ APPENDIX ANSWERS TO CHAPTER EXERCISES

CHAPTER 13

Exercise 1 Solution

The most effi cient method for deleting a huge number of features in a fi le or personal geodatabase is
to use the DeleteSearchedRows() method, which is defi ned by the ITable interface.

 //featureClass variable is an instance of IFeatureClass
 IQueryFilter qF = new QueryFilterClass();
 qF.WhereClause = "\"Name\" <> \'New York\'";
 ITable table = featureClass as ITable;
 table.DeleteSearchedRows(qF);

But when a FeatureClass is in an ArcSDE geodatabase, the most effi cient method for deleting
numerous features is using a search cursor.

Exercise 2 Solution

When using the search cursor to modify features, the recycling parameter must always be set to
false. Quite in contrast, the update cursors can use recycling when there is no need to update more
than one feature at once. This kind of cursor provides better performance in comparison with a
non-recycling search cursor.

Exercise 3 Solution

The ArcObjects Geometry namespace contains several enumerations that can be used to specify the
Well Known ID (WKID) of many available spatial reference systems in ArcGIS. The WKID of spa-
tial reference systems is defi ned by a standardization organization such as the European Petroleum
Survey Group (EPSG). It is possible to directly use the EPSG code for the known spatial references.

//for WGS 84 EPSG 4326
ISpatialReference srs = spatialReferenceFactory.
CreateGeographicCoordinateSystem(4326);

Alternatively, you can use these enumerations in the ArcObjects Geometry namespace to access the
desired spatial reference system.

ISpatialReferenceFactory spatialReferenceFactory = new
SpatialReferenceEnvironmentClass();
int coordinateSystemID = (int)esriSRGeoCSType.esriSRGeoCS_WGS1984;

ISpatialReference srs = spatialReferenceFactory.
CreateGeographicCoordinateSystem(coordinateSystemID);

CHAPTER 14

Exercise 1 Solution

The outbound interfaces (also known as event interfaces) are a special type of interface where all
members are of type event. For this reason, other objects are needed in order to handle events that

bapp.indd 476bapp.indd 476 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 Answers to Exercises ❘ 477

are notifi ed using event interfaces. Also they are hidden in the Visual Studio IDE. In other words,
outbound interfaces in .NET (such as IActiveViewEvents_Event) are not displayed when you are
coding in Visual Studio, but you can use them in C# or VB. They are mainly used for event wiring
in ArcObjects programming.

Exercise 2 Solution

Starting with ArcGIS 10.0, all custom components must be registered using the ESRIRegAsm.exe
utility. Your setup package must use this utility to register custom components. The ESRIRegAsm
.exe utility ships with ArcGIS for Desktop applications. The default installation path of
ESRIRegAsm.exe on 32-bit Windows operating systems is as follows:

<Windows Installation Drive >:\Program Files\Common Files\ArcGIS\bin\
ESRIRegAsm.exe

and on 64-bit Windows:

<Windows Installation Drive >:\Program Files (x86)\Common Files\ArcGIS\bin\
ESRIRegAsm.exe

Exercise 3 Solution

Using Custom Action Data, it is possible to keep track of the installation address of a custom com-
ponent on the target machine. For this purpose, you need to add the following Custom Action Data
to the Install and Uninstall actions:

/installationDir="[TARGETDIR]\"

Then in the Installer class, you can access the installation address using this code snippet:

this.Context.Parameters["installationDir"];

bapp.indd 477bapp.indd 477 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

bapp.indd 478bapp.indd 478 25/02/13 12:38 PM25/02/13 12:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

479

INDEX

Numbers and Symbols

64-bit background geoprocessing, 399
! (Not) operator, 77
!= (not equal to) operator, 76
% (reminder) operator, 71
&& (And) operator, 77
> (greater than) operator, 76
<= (less than or equal to) operator, 77
< (less than) operator, 77
* (multiplication) operator, 71
*/ (asterisk plus forward slash), 65
+ (addition) operator, 71, 82
- (subraction) operator, 71
. (dot), 43
/ (division) operator, 71
/* (forward slash plus asterisk), 65
// (double forward slash), 65
/// (three slashes), 93
: (colon), 93
; (semicolon), 66
== (equal to) operator, 76
? (question mark), 71
" (double quote) character literal, 70
' (single quote) character literal, 70
\ (backward slash), 70
{ } (curly braces), 66, 75–76
|| (Or) operator, 77

A

abstract classes, 146, 147
abstraction, 104

access modifi er keywords, 95
accessibility keywords, 90, 94–95
AccessWorkspaceFactory CoClass, 388
active layers, 55
ActiveView

exporting, 336–345
refreshing, 317–318

Add() method, IVariantArray interface, 368
add-ins

advantages, 48
application extensions, 435–450
creating, 49–52
deleting, 52
deploying, 450–456
distributing, 453–454
fi le structure, 452–453
installing, 48, 453–456
inter-component communication,

430–432, 466
managing, 52
overview, 48–49
sharing, 48
toolbars, creating, 52–55
versus ArcObjects SDK, 55

AddField() method
IFeatureClass interface, 206
ITable interface, 206

AddingAllFeatureClasses.zip fi le, 210
AddItem() method, 430–431
AddRenderer() method, 313–314
AddTwoNumbers() method, 90–91, 93–94
aggregation, 121–123
And (&&) operator, 77

bindex.indd 479bindex.indd 479 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

480

AnnotateEngine property, Map object – area of geometries, fi nding

AnnotateEngine property, Map object, 334
AnnotateLayerPropertiesCollection

collection, 328–328
Append member, FileMode enumeration, 124
Application CoClass, 149
application confi guration templates, 41
application extensions, 435–450
Application property

ArcMap class, 186
IApplication interface, 155

ARC/INFO ASCII GRID, 20
ARC/INFO GRID, 20
ArcCatalog, 14, 17, 18

Normal.gxt fi le, 41
ArcEditor, 31
ArcGIS

desktop GIS, 13–17
developer GIS, 17–18
mobile GIS, 18
server GIS, 11–13
VBA support, 36, 60

ArcGIS Add-Ins Wizard, 50–52, 53, 54–56
ArcGIS Data Interoperability extension,

27, 28
ArcGIS Developer Help, 144, 154, 155, 156,

157–159
object model diagrams, 144–145

entry points to ArcObjects, 155–156
fi nding associated members, 156–162
interface inheritance, 152–153
members of interfaces, 149–152
relationships between classes, 147–149
tips for using, 154–155
types of classes, 145–147
wormholes, 153

ArcGIS Engine, 17, 19
ArcGIS Explorer, 13, 17, 18
ArcGIS for Desktop

customizing applications, 36–37
add-ins, 48–55
ArcObjects SDK, 55–59
scripting, 41–48

user interface, 37–41
SDKs (Software Development Kits), 17

ArcGIS for Server, 12
ArcSDE geodatabases, 31–32
geospatial data access, 13
GIS web services, 18

ArcGIS for Smartphones and Tablets, 18, 19
ArcGIS Online, 12
ArcGIS Project Wizard, 56
ArcGIS Resource Center, 144, 155
ArcGIS Server. See ArcGIS for Server
ArcGlobe, 13, 17, 18
ArcIMS, 13, 18
ArcInfo, 31
ArcMap, 14

capabilities document, 16–17
toolbars and menus, adding, 37–41
user interface, 145
using a GIS web service inside, 14–17
using KML in, 24–26
VBA, enabling, 36

ArcObjects
COM (Component Object Model), 139.

140, 141, 144, 152–153
event handling, 432–435
GUID (Global Unique Identifi er) of types,

404–406
interface-based programming, 140–144
namespaces, 145, 154, 160
object model diagrams, 143–145
overview, 139–140

ArcObjects SDK, 18, 55–59
versus add-ins, 55

ArcPad, 18, 19
ArcPy, 43–47, 60
ArcReader, 13, 18
ArcScene, 13, 17, 18
ArcSDE for SQL Server Express, 31–32
ArcSDE geodatabases, 31–32
ArcSDE with ArcGIS for Server Enterprise, 32
ArcToolbox, 38–39, 44, 365–367
area of geometries, fi nding, 292

bindex.indd 480bindex.indd 480 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

481

AreaOfInterest property – ClassBreaksRenderer.zip fi le

AreaOfInterest property
ILayer interface, 175
ILayer2 interface, 179

ArrayList class, 122–123
arrays, 75–76

iterating, 78–81
members of, 83
multidimensional, 76
passing parameters between method calls,

110
arrows, object model diagrams, 150
as keyword, 121–122, 136, 143
assemblies, 112–113

adding references, 112–113
Assembly Visualizer, 160–162

assignment operations, 108–109
associations, 148–149, 150
automatic properties, 97–98

B

background geoprocessing, 389–397
BackgroundGPUsingQ.zip fi le, 393
barbell symbol, object model diagrams,

149–150
Base Class Libraries (BCL), 64, 108
BaseStatistics CoClass, 245
batch processing, 397–398
BCL (Base Class Libraries), 64, 108
BigInteger data type, 69
binary fi les, geospatial data in, 20–21
bool data type, 70, 78
boolean data type, 70, 71, 76, 78
break keyword, 78, 80
Breaks property, ScaleDependentRenderer

class, 313–314
buffering, 418–422
bugs

debugging using Visual Studio, 113–116
defi nition of, 117
exception handling, 117–120

Button add-ins, creating, 261–264
Button class, 87, 101

byte data type, 68, 69, 84
Byte data type, 68

C

C#
arrays, 75–76
block structure, 66
case sensitivity, 65
comments, 65
data types, 66–71
decision-making, 76–78
enumerations, 85–89
history of, 64–65
iteration, 78–81
methods, 89–93
object-oriented programming, 93–100
statement termination character, 66
syntax, 65–66

C-like Object Oriented Language
(COOL), 65

cached property, ILayer interface, 318
capabilities document, 16–17
Carto object model diagram,

177, 180, 193
cartography, 3, 10, 33
case sensitivity, 65
case statement, 78
casting, 83–85, 120–121
catching exceptions, 118–119
centroid of geometries, 292
chaining constructors, 99–100
char data type, 70, 78
character data types, 70
character literals, 70
checked block, 84
CircularArc, 258

creating, 264–268
City class, 94–100, 104
ClassBreaks property, Classify

object, 310
ClassBreaksRenderer, 309–313
ClassBreaksRenderer.zip fi le, 310

bindex.indd 481bindex.indd 481 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

482

classes – CreateFeature() method, IFeatureClass interface

classes, 111. See also specifi c classes
abstract, 146, 147
accessibility keywords, 95
BCL (Base Class Libraries), 64
CoClasses, 147, 148–150, 153, 157–159
constructors, 76, 99–100
creating, 94–96
encapsulation, 104–105
events, 94
inheritance, 105–106
instantiable, 146–147
members, 94
methods, 94, 98
part, 147
passing parameters between method calls,

110
properties, 93–94, 96–98
public interface, 94
specialization, 105
whole, 147

classifi cation of numeric fi elds, 309–313
Classify() method, 310
Clear() method

IFeatureSelection interface, 237
ITableSelection interface, 237

ClearSelection() method, IMap interface,
237

Click event, 74, 81, 87–89, 101
ClipNewYorkPY.zip fi le, 46
clipping feature classes, 46–47
Clone() method, 108–109
Close() method, 128, 253

IRing interface, 274–275
CLR (Common Language Runtime), 64
CLSID, 404
CoClasses, 147, 148–150, 153, 157–159
code snippets. See snippets
Codeplex, 135
Collect() method, System.GC class, 252
collections

aggregation, 121–122
ArrayList class, 122–123

generics, 123
Color class, 296–298
ColorRamp class, 296–298
Colors property, ColorRamp class, 298
COM (Component Object Model), 139, 140,

141, 144
interface inheritance, 152–153

comments, 65
statement termination character, 66
XML comments, 93

Common Language Runtime (CLR), 64
CompareTo() method, 292
comparison operations, 76–77

reference types vs. value types, 109
Component Object Model. See COM
concatenation, 71–72
conceptual model, 19
conditions, 76–78

evaluating, 78–81
config.esriaddin fi le, 48
constructors

chaining, 99–100
default, 76, 99
defi ning, 98–100
master, 99–100

ConstructUnion() method,
ITopologicalOperator interface,
286–287

context menus, ArcGIS for Desktop
applications, 41

Convert class, 84
converting data types, 83–85
COOL (C-like Object Oriented Language), 65
Count property, SelectionSet object,

229–230
Create member, FileMode enumeration, 124
Create() method, IWorkspaceFactory

interface, 407–408
CreateESRISpatialReferenceFromPRJFile()

method, 410
CreateFeature() method, IFeatureClass

interface, 276, 294, 418, 422

bindex.indd 482bindex.indd 482 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

483

CreateFeatureBuff er() method – DeleteField() method, IClass interface

CreateFeatureBuffer() method,
IFeatureClass interface, 418

CreateFeatureDataset() method,
IFeatureWorkspace interface, 410

CreateFromDataset() method, IRasterLayer
interface, 215

CreateNew member, FileMode enumeration,
124

CreateRamp() method, 298
CreateRow() method, ITable interface, 276
CreateTable() method, IFeatureWorkspace

interface, 217
CreatingANewFeature.zip fi le, 276
CreatingTxt.zip fi le, 125
crowdsourcing, 4
CSV2Table.zip fi le, 218
cursors

insert, 418–422, 427
memory management, 252–254
recycling, 232, 252, 256
search, 229–232, 280–281, 284, 422–426,

427
update, 280, 284, 423–426, 427

custom components
application extensions, 435–450
deploying, 456–464
installers, creating, 459–464
inter-component communication, 430–432,

466
sharing state, 430–432

custom tools
dialog box of, opening, 384–388
reference page, 367
running, 368–370, 375–384, 390–392

Customize window, ArcMap, 37, 38,
40–41

D

Dangermond, Jack and Laura, 4
data exchange format (DXF), 20
Data Frames. See maps

data types, 66–71. See also specifi c data types
boolean, 70
character, 70
converting, 83–85
date and time, 70
fractional, 67–69
method signatures, 91
narrowing, 83–84
nullable, 71
numeric, 67–69
strong typing, 67
variables. See variables
widening, 83–84

Database Management System. See DBMS
Dataset class, 199
datasets, 30-31
Datasets property, IWorkspace interface, 210
date data types, 70
DateTime structure, 70
.dbf fi les, 21
DBMS (Database Management System), 13

Simple Features specifi cation, 23
spatial DBMS, 21–23
spatially enabled DBMS, 22

debugging
defi nition of, 116
using Visual Studio, 113–116

decimal data type, 68, 69
Decimal data type, 68
decision-making, 75–76
default

constructor, 76, 99
renderer, 302

DefinitionExpression property, IFeature
LayerDefinition2 interface, 254–255

delegates, 111
Delete() method

IDataset interface, 215
IRow interface, 418

DeleteFeature() method, 423
DeleteField() method, IClass interface,

204, 205

bindex.indd 483bindex.indd 483 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

484

deleting – .exe fi les

deleting
add-ins, 52
FeatureClasses, 215
FeatureDatasets, 215
fi elds, 204–205
rasters, 215
tables, 215

Dequeue() method, 396
desktop

add-ins. See add-ins
GIS, 13–17
viewers, 13, 18
virtual globes, 13, 18

developer GIS, 17–18
display units, 351, 362
disposal, 252–254
Dispose() method, 135, 253
distance between geometries, 287–292
distributing add-ins, 453–454
.dll fi les, 112
do/while statement, 78, 79–80
DockableSelection.zip fi le, 238
DockableWindowStatistics.zip fi le, 246
Document property

Application CoClass, 147
IApplication interface, 156, 167

DotNetZip library, 133–135
double data type, 68, 69, 81, 85
Double data type, 68
drawing

multipoints, 264–268
points, 261–264
polygons, 272–275
polylines, 268–272

DrawingMultipoints.zip fi le, 264
DrawingPoints.zip fi le, 261
DrawingPolygonInExRing.zip fi le, 274
DrawingPolygonSegmentColl.zip fi le, 275
DrawingPolylines.zip fi le, 270
duplicate features, fi nding, 281–284
DXF (data exchange format), 20
dynamic hyperlinks, 321–324

E

Earth Resources Observation and Science
Center (EROS), 184

elements, adding, 346–348
FrameElements, 352–360
GraphicElements, 348–351

encapsulation, 104–105
Enqueue() method, 396
Enum object, 175
enumerations, 85–89, 111
Envelope CoClass, 292
envelope of geometries

defi nition of, 259
fi nding, 292

Envelope property, IGeometry interface, 259,
292

Equal to (==) operator, 76
Equals() method, IRelationalOperator

interface, 281
EROS (Earth Resources Observation and

Science Center), 184
escape characters, 70
Esri

geodatabases (See geodatabases)
GRID, 20
SDKs (Software Development Kits), 17–18
shapefi le, 21

.esriaddin fi les, 48
esrifieldtype enumeration, 85
event interfaces, 433–435
event wiring, 433
events

accessibility keywords, 90, 94–95
defi nition of, 74, 94, 101
handling, 432–435
object model diagrams, 151

events keyword, 151
exception handling, 117–120

browsing exceptions, 119
fi ltering exceptions, 118–119
throwing exceptions, 118

.exe fi les, 112

bindex.indd 484bindex.indd 484 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

485

Execute() method – FinishDrawing() method

Execute() method
IGeoProcessor2 interface, 369, 374

ExecuteAsync() method, 396
exercise answers, 467–477
explicit casting operator, 84
exporting the ActiveView, 336–345
ExportPDF CoClass, 341
Expression property,

IDisplayExpressionProperties interface,
319–320

Extensible Application Markup Language
(XAML), 75

extensions, 435–450
Extent property

IActiveView interface, 236
IGeoDataset interface, 178

exterior rings, of polygons, 272–273, 294

F

FeatureClass, 179
FeatureClass property, IFeatureLayer2

interface, 183, 199
FeatureClasses

accessing, 197–204
adding to maps, 207–213
clipping in FeatureDatasets, 46–47
creating, 408–417
deleting, 215
simple statistics, 245–250

FeatureDatasets
accessing, 208–210
adding FeatureClasses, 210–213
clipping feature classes, 46–47
creating, 408–417
deleting, 215

FeatureLayer CoClass, 166, 179–183, 199
FeatureLayerInspector.zip fi le, 180
FeatureLayers, 179–180

accessing FeatureClass associated with,
199–204

count of selected features, reporting,
230

general properties, inspecting, 180–183
subsets of features, displaying, 254–255

features
creating, 276–280, 418–422
duplicates, fi nding, 281–284
MapTips, 318–321
modifying, 280–281, 422–426
selecting, 228–237
unions, creating, 284–287

FeatureType enumeration, 85
Field CoClass, 199
Field property

Fields CoClass, 199
ILayerfields interface, 180

fi eld-based hyperlinks, 322
FieldCount property

Fields CoClass, 199, 216–217
ILayerFields interface, 180

FieldInfo property, ILayerfields interface, 180
fi elds

adding, 206–207
deleting, 204–205
fi nding, 204–205
simple statistics, 245–250

Fields CoClass, 148, 199
Fields property, Cursor object, 231
FileGDBWorkspaceFactory CoClass, 388
FileInfo class, 112–113
FileMode enumeration, 124
fi le geodatabases, 30–31
fi les, reading and writing, 123–135

KML fi les, 129–133
KMZ fi les, 133-135
text fi les, 125–128

FileStream object, 124
fi ltering exceptions, 118–119
fi nancial calculations, 69
FindField() method, IFields2 interface, 204
FindFieldByAliasName() method, IFields2

interface, 204–205
FindingDuplicateFeatures.zip fi le, 282
FindingNearestCities.zip fi le, 288
FinishDrawing() method, 261

bindex.indd 485bindex.indd 485 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

486

FirstAddIn.zip fi le – geospatial data

FirstAddIn.zip fi le, 49
FirstWPFApp.zip fi le, 72
fl ag variables, 70
float data type, 68, 69, 85
Flush() method, 418–419, 427
FocusMap property

IMxDocument object, 167
MxDocument CoClass, 159

folders, local well-known, 48, 453
for statement, 78–79
foreach statement, 78, 79
Format() method, 82
fractional data types, 67–69
frame elements, adding, 346–348, 352–360

G

garbage collection, 252–254
generics, 123
geocachers, 4
geocaching, 4
Geodatabase object model, 177–178, 206–207,

406–417
geodatabases

ArcSDE geodatabases, 31–32
creating, 407–408
datasets, 30
fi le geodatabases, 30–31
personal geodatabases, 30

geographic coordinates, 8–12
Geography Markup Language. See GML
Geolocation API, 4–8
geometry

drawing, 260–261
multipoints, 264–268
points, 261–264
polygons, 272–274
polylines, 268–272

enumeration, 85
fi nding

area, 292
centoid, 292
distances, 287–292

duplicate features, 281–284
envelope, 292
lengths, 292
nearest points, 287–292

geoprocessing operations, 284–287
object model diagram, 258–260
overview, 258–259
updating geometry of features, 280–281

Geometry property, SpatialFilter CoClass,
234, 236–237

GeometryBag CoClass, 285
geoprocessing

via ArcPy site package, 45–48
common operations, 284–287
framework, 365–366
tools

ArcToolbox, 365–367
background geoprocessing, 389–397
batch processing, 397–398
custom. See custom tools
dialog box of, opening, 384–388
managing execution, 399
system. See system tools

georelational models, 21
GeoRSS, 23, 28–29, 33
GEoRSS GML, 29
geospatial data

access, 11, 13, 22
in binary fi les, 20–21
crowdsourcing, 4
geocaching, 4
Geolocation API, 4–8
in georelational models, 21
models, 19–21
overview, 3–4
retrieving as GML, 26–28
softcopy outputs

elements, 346–360
exporting ActiveView, 336–345
labels, 328–336

sources of errors, 8, 17
in spatial DBMS, 21–23
subsets, displaying, 254–255

bindex.indd 486bindex.indd 486 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

487

Geospatial Information Science (GISc) – IClassBreaksRenderer interface

symbology, setting
ActiveView, refreshing, 317–318
ClassBreaksRenderer class, 309–313
Color class, 296–298
ColorRamp class, 296–298
RasterRGBRenderer class, 315–317
Renderer class, 300–302
ScaleDependentRender class,

313–315
SimpleRenderer class, 302–306
Symbol class, 298–300
UniqueValueRender class, 306–309

in text fi les, 20
in XML structures, 23–29

Geospatial Information Science (GISc), 8
geotechnologies, 3, 10, 33
get_Datasets() method, IWorkspace

interface, 213
get_Items() method, StyleGallery object,

354–355
getCurrentPosition function, 6–7
GetFeature() method, IFeatureClass

interface, 418
getLocationCallback function, 7
GetMessages() method, IGeoProcessor2

interface, 374
GIS

components, 10
software, 10–19

desktop GIS, 13–17
developer GIS, 17–18
mobile GIS, 18, 19
server GIS, 11–13

GIS web services, 11–13. See also WCS, WFS,
WMS

combining, 12
using inside ArcMap, 14–17

GISc (Geospatial Information Science), 8
Global Unique Identifi er. See GUID
GML (Geography Markup Language), 11, 23,

33
GeoRSS GML, 29
GML application schema, 26, 29

relationship with XSD, 28
retrieving geospatial data as, 26–28

GPS (Global Positioning System), 3
current location, retrieving, 4–8
Esri SDKs, 18
geocaching, 4
geospatial data collection steps, 4
map creation steps, 4

GPToolCommandHelper CoClass, 385
graphic elements, adding, 346–351
GroupLayer CoClass, 174
GUID (Global Unique Identifi er)

use of in ArcObjects, 404–406
GxDialog CoClass, 186–191

H

handheld devices
current location, retrieving, 4–8
geospatial data collection steps, 4
map creation steps, 4
mobile GIS, 18
SDKs (Software Development Kits), 18

handheld GIS. See mobile GIS
Hejlsberg, Anders, 65
hWnd property, 187
hyperlinks, 321–324
Hyperlinks.zip fi le, 322

I

I2DShape interface, 141–143
I2DShape2 interface, 141–143
IActiveView interface, 167, 176, 236, 317–318,

325
IActiveViewEvents_Event interface, 433,

435, 466
IAddDataDialog interface, 187
IAnnotateLayerProperties interface, 329
IApplication interface, 149–150, 152,

155–156, 191–192
IClass interface, 204
IClassBreaksRenderer interface, 309

bindex.indd 487bindex.indd 487 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

488

IClassify interface – InstallationVerySimpleCustomComponent.zip fi le

IClassify interface, 310
ICloneable interface, 108–109, 168
ICmykColor interface, 297
IColorRamp interface, 297
ICommandBars interface, 406
IComparer interface, 168
IConstructMultipoint interface, 264–268
IConstructPoint2 interface, 261
ICurve interface, 292
ICurve3 interface, 292
IDEs (Integrated Development Environments),

for add-ins creation, 49
IDisplayExpressionProperties interface,

319–321, 325
IDisplayTransformation interface, 362
IDisposable interface, 252–253
IDockableWindow interface, 250
IDocument interface, 149, 150, 156, 167
IDs property, ISelectionSet2 interface, 230–231
IElement interface, 346–347, 352
IEnumerable interface, 168
IEnumerator interface, 168
IExport interface, 337
IExportPDFPasswordSecurity interface, 345
if statement, 77, 78
IFeature interface, 236–238
IFeatureClass interface, 204–206, 226, 276,

294, 418
IFeatureDataset interface, 209
IFeatureLayer interface, 180–183
IFeatureLayer2 interface, 180–183
IFeatureLayerDefinition2 interface,

254–255
IFeatureSelection interface, 229–230,

233–234, 256
IFeatureWorkspace interface, 208, 215,

217–218, 408
IFieldEdit2 interface, 199, 207
IFields2 interface, 199, 204
IFieldsEdit interface, 199, 217
IGeoDataset interface, 177–178
IGeoFeatureLayer interface, 180–182, 300,

306, 328–329

IGeometry interface, 259, 292
IGeometryCollection interface, 270, 274
IGeoProcessor2 interface, 368–374, 397–398,

401
IGeoProcessorResult2 interface, 396
IGMxDocument interface, 156
IGPTool interface, 388
IGPToolbox interface, 388
IGraphicsContainer interface, 346, 348, 352
IGrayColor interface, 297
IGxCatalog interface, 185
IGxDialog interface, 189–190
IGxFile interface, 186, 194
IGxLayer interface, 185–186, 194
IGxObject interface, 189
IGxObjectContainer interface, 189
IHistogram interface, 309
IHlsColor interface, 297
IHotlinkContainer interface, 322
IHsvColor interface, 297
IHyperlinkContainer interface, 322, 324, 325
IID (interface ID), 404
ILayer interface, 175, 177–178, 318, 319
ILayer2 interface, 178–179
ILayerFields interface, 180
ILayerGeneralProperties interface,

177–178, 196
ILSpy, 160–162
IMap interface, 237
IMAware interface, 258
IMxDocument interface, 156, 159, 167, 176–177,

182
IName interface, 408
inheritance, 105–106

interface inheritance, 152–153
type inheritance, 147, 152, 157

InitDefaultValues() method, IRowSubtyps
interface, 422

insert cursors, 418–422, 427
Insert() method, IFeatureClass interface,

418
InstallationVerySimpleCustomComponent

.zip fi le, 459

bindex.indd 488bindex.indd 488 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

489

instantiable classes – keywords

instantiable classes, 146–147
instantiation, 148
int data type, 67, 68, 78, 79–80, 84, 85
Int16 data type, 68
Int32 data type, 68, 69
Int64 data type, 68
integral data types, 67–68
Integrated Development Environments. See

IDEs
inter-component communication, 430–432, 466
interface ID (IID), 404
Interface keyword, 141
interfaces, 111. See also specifi c interfaces

authoring and implementing, 140–144
defi nition of, 111
descriptive help, 154–155
event interfaces, 433–435
inheritance, 152–153
members of, 149–151
optional, 177–178, 196
outbound, 433
QI (Query Interface), 140

interior rings, of polygons, 272, 294
internal keyword, 95
InternalCatalog property, GxCatalog class,

189
IObjectClass interface, 204
IPointCollection interface, 264, 268–269,

273–274, 294
IPointIDAware interface, 258
IProximityOperator interface,

287, 292
IRasterBandCollection interface, 317
IRasterLayer interface, 184, 301
IRasterRGBRenderer interface, 315–317
IRasterRGBRenderer2 interface, 315–317
IRelationalOperator interface, 281–284
IRgbColor interface, 297
IRing interface, 274–275
IRow interface, 218
IRowBuffer interface, 218
IRowSubtypes interface, 422
is keyword, 121, 143

IsActive() method, IActiveView interface,
167

IScreenDisplay interface, 260–261, 264, 294
ISegmentCollection interface, 270–272, 274
ISelectionSet interface, 229
ISelectionSet2 interface, 230–232
ISpatialReferenceFactory interface,

409–410
ISxDocument inteface, 156
ITable interface, 276
ITableCollection interface, 199, 214
ITableHistogram interface, 309
ITableSelection interface, 229–230,

233–234, 237
Item property, StyleGalleryItem class,

354–355, 363
iteration statements, 78–81
ITopologicalOperator interface, 284–286
IUnknown interface, 144, 152, 155
IVariantArray interface, 368–369
IWorkspace interface, 208, 210, 213, 224, 406,

427
IWorkspaceDomains interface, 426
IWorkspaceFactory interface, 207–208,

406–409, 427
IWorkspaceName interface, 408
IZAware interface, 258

J

Java SDK, 17
Just-In-Time (JIT) extensions, 444

K

key-value pairs, 12
Keyhole Markup Language. See KML
Keyhole Markup Language, Zipped (KMZ),

133–135
keywords

access modifi er, 95
accessibility keywords, 90, 94–95
case sensitivity, 65

bindex.indd 489bindex.indd 489 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

490

KishIsland.kml fi le – maps

KishIsland.kml fi le, 24
.kml fi les, 23–24
KML (Keyhole Markup Language), 11, 23, 33

creating KML fi les, 23–26, 129–133
using in ArcMap, 24–26

KML.zip fi le, 129
.kmz fi les, 23
KMZ (Keyhole Markup Language, Zipped),

133–135
KMZ.zip fi le, 133

L

LabelEngineLayerProperties CoClass,
329

labeling, 328–329
Maplex Label Engine, 328–329, 334–336
object model diagram, 328
Standard Label Engine, 328–333

latitude, 8
Layer object, 165–166, 175, 177–179
Layer property

ILayerFile interface, 193–194
LayerCount property, Map class, 170–174
LayerDescription property,

ILayerGeneralProperties interface, 177
layers, 165–168

accessing, 168–174
FeatureLayers, 179–183
general properties, 175–179
overview, 165–168
RasterLayers, 183–184
symbology, See symbology for geospatial

data display
Layers property

IEnumLayer interface, 174
Map class, 170–174

LayersOfMaps.zip fi le, 168
LBS (Location Based Services), 8
length of geometries, fi nding, 292
Length property, ICurve interface, 292
line class, 85
LinearFeature class, 105–107

lines, 258. See also polylines
enumeration, 85

List class, 123
list methods, 398
ListFeatureClasses() method,

IGeoProcessor2 interface, 398
local

variables, 95
well-known folders, 48, 453

location
getting with Geolocation API, 4–8
Location Based Services (LBS), 8

logical
model, 19
operators, 77

lollipop symbols, object model diagrams, 149
long data type, 68, 69, 78, 84
longitude, 8
loops, 78–81
.lyr fi les, 166

adding to maps, 184–191
saving, 193–194

M

managed code, 64, 253
many-to-many relationship, namespaces and

assemblies, 112
Map CoClass, 147, 153, 157–159, 165, 167, 173,

176
Maplex Label Engine, 328–329, 334–336
MaplexAnnotateMap class, 334, 362
maps

FeatureClasses
accessing, 197–204
adding, 207–213
deleting, 215

layers
accessing, 168–174
adding .lyr fi les, 184–191
properties, 175–179
saving .lyr fi les, 193–194

overview, 165–168

bindex.indd 490bindex.indd 490 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

491

MapScale property, IMap interface – .NET Framework

projection, 8, 13
rasters

adding, 214–215
deleting, 215

tables
accessing, 197–204
adding, 214
deleting, 215

MapScale property, IMap interface, 325
MapSurround object, 352–353
MapSurroundFrame object, 352
MapTips, 318–321
MapTips.zip fi le, 319
markers, adding, 346–351
master constructors, 99–100
Math class, 72, 81
math operators, 71
MaximumScale property, ILayer interface,

176–177
members

accessibility keywords, 90, 94–96
of arrays, 83
of classes, 94
descriptive help, 154–155
fi nding, 156–162
of interfaces, 149–151
object notation syntax, 81
of string data type, 82–83

memory management, 252–254
MemoryStream object, 124
menus, adding to ArcMap, 37–41
methods, 89–93, 94

accessibility keywords, 90, 94–95
case sensitivity, 65
declaring, 90
defi ning, 98
list methods, 398
local variables, 95
named parameters, 93
object model diagrams, 150–151
optional parameters, 91–93
overloading, 82, 91, 101
overriding, 106–107, 136

signatures, 91, 93, 101
string data type, 82–83
XML comments, 93

Methods.zip fi le, 93
Microsoft Jet, 30, 399
MinimumScale property, ILayer interface,

176–177
mobile GIS, 18, 19
ModelBuilder, 47, 366–367
models. See geospatial data models
ModifyFeatures.zip fi le, 424
mscorelib.dll fi le, 112
multidimensional arrays, 76
multiline comments, 65
MultipleRingBuffer.zip fi le, 370
multipoints

defi nition of, 258
drawing, 264–268
geoprocessing operations, 284–287

.mxd fi les, 145
enabling VBA in ArcGIS, 36
saving, 191–192

MxDocument CoClass, 145–146, 147, 149,
165–168

relationship with Map class, 157–159, 161–162

N

n (new line) character literal, 70
Name objects, 224
Name property

Field CoClass, 199, 217
ILayer interface, 175

named parameters, 93
namespaces, 112–113

ArcObjects, 145, 154, 160
importing, 113

narrowing data types, 83–84
.NET Framework, 63–64

C#. See C#
data types, 67–71
generics, 123
managed code, 253

bindex.indd 491bindex.indd 491 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

492

.NET Framework – Open Geospatial Consortium

memory management, 252–254
namespaces, 112-113
programming languages, 64
reading and writing fi les, 123–135
types overview, 111

.NET Refl ector, 160

.NET SDK, 17
NetworkStream object, 124
new keyword, 76, 95–96, 143, 147
new operator, 75
NewDocument() method, IApplication

interface, 191
NewFeatures.zip fi les, 419
Next() method

IEnumColors interface, 298
IFeatureDataset interface, 209

Normal.gxt fi le, 41
Normal.mxt fi le, 41
north arrows, adding, 346–348, 352–360
Not (!) operator, 77
Not equal to (!=) operator, 76
nullable data types, 71
NumberClick event handler, 87
NumberOfVertices property, I2DShape

interface, 143
numeric data types, 67–69
numeric fi elds

classifi cation, 309–313
simple statistics, 245–250

O

Object Browser, Visual Studio, 154, 155,
156–162

object model diagrams, 143–145
ArcCatalog, 185
Carto, 177, 180, 193
Catalog, 185, 188
CatalogUI, 188
entry points to ArcObjects, 155–156
Geodatabase, 177–178, 206–207, 406–417
Geometry, 258–260

interface inheritance, 152–153
limitations, 154
members of interfaces, 149–152
optional interfaces, 177–178
relationships between classes, 147–149
for selecting features, 228–229
for selecting rows, 228–229
tips for using, 154–155
types of classes, 145–147
wormholes, 153

object notation syntax, 81
object-oriented programming (OOP), 93–94

abstraction, 104
defi ning

constructors, 98–100
methods, 98
properties, 96–98

encapsulation, 104–105
example, 94–96
inheritance, 105–106
polymorphism, 106–108

objects
abstraction, 104
casting, 120–121
creating, 95–96
defi nition of, 81
manipulation, 81–83
null reference error, 96
object notation syntax, 81
singleton objects, 406, 408, 427
workspace objects, 388–389

OGC (Open Geospatial Consortium), 11, 18
GML (Geography Markup Language), 11,

23, 26–28, 33
KML (Keyhole Markup Language), 11,

23–26, 33
WCS (Web Coverage Service), 11
WFS (Web Feature Service), 11, 27–28, 33
WMS (Web Map Service), 11–12, 33
Simple Features specifi cation, 23

OOP. See object-oriented programming
OOP.zip fi le, 100
Open Geospatial Consortium. See OGC

.NET Framework (continued)

bindex.indd 492bindex.indd 492 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

493

Open member, FileMode enumeration – polylines

Open member, FileMode enumeration, 124
Open() method

IName interface, 224
IWorkspaceFactory interface, 208, 409

OpenDocument() method, IApplication
interface, 191

OpenFeatureClass() method,
IFeatureWorkspace interface, 208

OpenFeatureDataset() method,
IFeatureWorkspace interface, 208

OpenFromFile() method
IWorkspaceFactory interface, 409

OpenFromFile() method, IWorkspaceFactory
interface, 208

OpeningCustomModelDialogBox.zip fi le,
386

OpenOrCreate member, FileMode
enumeration, 124

OpenRasterDataset() method,
IRasterWorkspace interface, 215

operators
comparison, 76–77
logical, 77
math, 71
overriding, 112
short circuit, 77
shorthand assignment, 72
spatial, 281–292

optional
interfaces, 177–178, 196
parameters, 91–93

Or (||) operator, 77
out keyword, 110–111
outbound interfaces, 433
outputs. See softcopy outputs
overloading methods, 82, 91, 101
overriding

methods, 106–107, 136
operators, 112

P

page units, 351, 362

parameters
modifi ers, 109–111
named, 93
optional, 91–93
passing between method calls,

109–111
Parse() method, double class, 81
part classes, 147
PartialRefresh() method, IActiveView

interface, 318, 325
passing by reference, 110
passing by value, 110
Path Property, IGxFile interface, 186
paths. See also polylines

defi nition of, 259
fi nding length, 292

personal geodatabases, 30
photogrammetry, 3, 10, 33
physical model, 19
point class, 85
points

defi nition of, 20, 258
drawing, 261–264
enumerations, 85
geoprocessing operations, 284–287
nearest, fi nding, 287–292
properties, 258

polygon class, 85
polygons

area, fi nding, 292
centroid, fi nding, 292
defi nition of, 20–21
drawing, 272–275
enumeration, 85
exterior rings, 272–273, 294
geoprocessing operations, 284–287
interior rings, 272, 294
perimeter, fi nding, 292

polylines
defi nition of, 20
drawing, 268–272
geoprocessing operations, 284–287
length, fi nding, 292

bindex.indd 493bindex.indd 493 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

494

polymorphism – ReleaseComObject() method, Marshal class

polymorphism, 106–108
method overloading, 82, 91, 101
method overriding, 106–107, 136

PostGIS, 22
private keyword, 90, 95
private variables, 90, 95, 97
professional desktop GIS products, 14
projection, 8, 13
projects, Visual Studio, 53
properties

accessibility keywords, 90, 94–95
automatic properties, 97–98
defi ning, 96–98
defi nition of, 93, 101
of layers, 175–179
object model diagrams, 149–150
property blocks, 96–97
string data type, 82–83

property blocks, 96–97
PropertySet CoClass, 208–209
protected internal keyword, 95
protected keyword, 95
public interface of classes, 94
public keyword, 90, 95, 96
public variables, 90, 94, 95
PutCoord() method, 261
Python. See also scripting

ArcPy, 43–47, 60
clipping feature classes, 46–47
geoprocessing tools, 366–367
versus ModelBuilder, 47
overview, 36, 41–42
Python window, 42–44
removing Data Frame layers, 45–46
site packages, 45, 60

Q

Query Interface (QI), 140
query string, 12
QueryFilter CoClass, 148, 229,

231–232–234, 237, 255

R

Railway class, 107
Raster property, IRasterLayer interface, 184
RasterLayer CoClass, 166, 183–184
RasterRGBRenderer, 315–317
RasterRGBRenderer.zip fi le, 316
rasters

adding to maps, 214–215
deleting, 215
models, 19
renderers, 300–302, 315–317

RDBMS (relational database management
system)

geospatial data in, 22, 30
raster data formats, 19

RDF (Resource Description Framework), 28
reading fi les, 123–135

KML fi les, 129–132
KMZ fi les, 133–135
text fi les, 125–128

ReadLine() method, StreamReader class, 128
real-world units, 351, 362
records

creating, 218–223
subsets of, accessing, 237–244

recycling cursors, 232, 251–252, 256
ref keyword, 110
reference types, 108

assignment operations, 108–109
comparison operations, 109
passing parameters between method calls,

109–111
references, Visual Studio, 53

adding to assemblies, 112–113
Refresh() method, IActiveView interface,

318
refreshing the ActiveView, 317–318
relational database management system. See

RDBMS
relationships. See object model diagrams
ReleaseComObject() method, Marshal class,

254, 256

bindex.indd 494bindex.indd 494 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

495

remote sensing – Simple Features specifi cation

remote sensing, 3, 10, 33
RemoveAllLayerPY.zip fi le, 45
RemoveHyperlink() method, 324
Renderer class, 300–302
Renderer property

FeatureLayer CoClass, 300
IRasterLayer interface, 301

renderers, 300–302
ClassBreaksRenderer, 309–313
default, 302
RasterRGBRenderer, 315–317
Renderer class, 300–302
ScaleDependentRenderer, 313–315
SimpleRenderer, 302–306
UniqueValueRenderer, 306–309

Replace() method, 82
RequiredFields property,

IObjectClassDescription interface, 217
resolution, 340
Resource Description Framework (RDF), 28
ReturnDistance() method

IProximityOperator interface, 292
Road class, 105–106
rows

creating, 215–224
selecting, 228–237

RSS (RDF Site Summary), 28
GeoRSS (See GeoRSS)

RunningCustomModel.zip fi le, 376

S

Save() method, IApplication interface, 191
SaveAsDocument() method, IApplication

interface, 192
scale bars, adding, 346–348, 352–360
ScaleDependentRenderer, 313–315
ScaleRangeReadOnly property, ILayer2

interface, 178–179
schema locks, 205, 226
schema reporter add-ins, creating, 199–204
SchemaCreation.zip fi le, 410
SchemaReporter.zip fi le, 200

scientifi c calculations, 69
screen resolution, 340
scripting, 41–48
SdeWorkspaceFactory CoClass, 388
SDKs (Software Development Kits), 17–18
SDSS (Spatial Decision Support Systems), 8
search cursors, 229–232, 280–281, 284,

422–426
Search() method, 229, 256

ISelectionSet2 interface, 231–232
segments

defi nition of, 20, 258–259
ISegmentCollection interface, 270–272
polygon rings, creating, 274–275
Segment class, 258

Select By Attributes window, 228–233
Select By Location window, 228–229
Select Layer By Attribute tool, 42–44
SelectedLayer property, IMxDocument

interface, 182–183
SelectFeatures() method, 234
Selection property, IActiveView interface,

318
server GIS, 11–13
SetEnvironmentValue() method, 398
SetTool() method, IGPCommandHelper

interface, 388
Shape property, IFeature interface, 236–237
shapefi le, 21

limitations, 21
mandatory fi les, 21

ShapeType property, IFeatureLayer2
interface, 180, 181

s haring state between components, 430–432
short circuit, 77
short data type, 68, 69, 78, 85
shorthand assignment operators, 72
ShowTips property, ILayer interface, 176, 319
.shp fi les, 21
.shx fi les, 21
Simple CalculatorFirstLineOfDefence

.zip fi le, 113
Simple Features specifi cation, 23, 32

bindex.indd 495bindex.indd 495 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

496

Simple Managed C (SMC) – symbology for geospatial data display

Simple Managed C (SMC), 65
simple statistics, 245–250
SimpleAppExtension.zip fi le, 436
SimpleCalculator.zip fi le, 86
SimpleRenderer class, 302–306
SimpleRenderer.zip fi le, 303
Single data type, 68
singleton objects, 406, 408, 427
site packages, Python, 45, 60

ArcPy, 43–47
Size property, ColorRamp class, 298
SMC (Simple Managed C), 65
Snippet Finder, 57–59
snippets

defi ned, 57
Snippet Finder, 57–59

softcopy outputs
elements, 346–348

frame, 352–360
graphic, 348–351

exporting the ActiveView, 336–345
labels, 328–329

Maplex Label Engine, 328–329,
334–336

Standard Label Engine, 328–333
Software Development Kits), 17-18
solutions, Visual Studio, 53
Spatial Decision Support Systems (SDSS), 8
spatial DMBS, 13
spatial operators, 281–292
spatial reference systems, 408–417
SpatialFilter CoClass, 232–234
spatially enabled DBMS, 22
specialization, 105
spheroid, 8
Split() method, 82
standard deviation, 245–250
Standard Label Engine, 328–333
StartDrawing() method, 261
StartEditing() method, 276
StartExporting() method, 338–339
static keyword, 155
statistics, 245–250

Statistics property
IStatisticsResults interface, 245

StopEditing() method, IWorkspaceEdit
interface, 276

Store() method
IRow interface, 276
IRowBuffer interface, 218

Stream object, 124
StreamReader class, 124–125, 128
StreamWriter class, 124–125, 128
string class, 82–83
string data type, 70, 71, 78, 82–83, 85
strong typing, 67
structured exception handling, 117–120
StructuredExHandling.zip fi le, 118
structures, 111
Style Manager window, 353
StyleGallery object, 354–355, 363
StyleGallery property, IMxDocument

interface, 354
StyleGalleryClass, 354–355, 363
subsets

of geospatial data, 254–255
of records, 237–244

Subsets property, IFeatureDataset interface,
209

summation, 245–250
surveying, 3, 10, 33
switch statement, 78
Symbol class, 298–300
Symbol property, GraphicElement class,

348
symbology for geospatial data display

ActiveView, refreshing, 317–318
ClassBreaksRenderer class, 309–313
Color class, 296–298
ColorRamp class, 296–298
RasterRGBRenderer class, 315–317
Renderer class, 300–302
ScaleDependentRender class, 313–315
SimpleRenderer class, 302–306
Symbol class, 298–300
UniqueValueRenderer class, 306–309

bindex.indd 496bindex.indd 496 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

497

syntax – UI (user interface)

syntax
C#, 65–66
object notation, 81

System namespace, 112
system tools, 366–367

opening dialog box of, 384–388
reference page, 367
running, 368–375, 390–392

System.Collections namespace, 122–123
System.Collections.Generic namespace,

123
System.Data.Sql namespace, 112
System.Data.SqlClient namespace, 112
system.dlll fi le, 112
System.Exception class, 119
System.IO namespace, 112–113, 119

reading and writing fi les, 123–135
System.IO.Compression namespace, 112, 133
System.IO.Packaging namespace, 133
System.Object class, 81, 83, 106, 107, 122

T

t (horizontal tab) character literal, 70
Table Of Contents window, 167, 175–177, 182
tables

accessing, 197–204
adding to maps, 214
converting CSV text fi les to, 218–223
creating, 215–224
deleting, 215
fi elds

adding, 206–207
deleting, 204–205
fi nding, 204–205
simple statistics, 245–250

records
accessing subsets of, 237–244
creating, 218–223

rows
creating, 215–224
selecting, 228–237

tagRECT structure, 337–340, 362
templates, application confi guration, 41
text fi les

creating, 125–128
geospatial data in, 20

TheSimplestExample.htm fi le, 4–5
this keyword, 98
throw keyword, 118
throwing exceptions, 118
time data types, 70
TimeSpan structure, 70
ToCharArray() method, 82
tool palette, adding tools, 355–360
toolbars

adding to ArcMap, 37–41
creating using an add-ins, 52–55

ToolboxWorkspaceFactory CoClass,
388–389

tools (geoprocessing)
ArcToolbox, 365–367
opening dialog box of, 384–388
reference page, 367
running, 368–370, 375–384, 390–392

ToString() method, 81
ToUpper() method, 82
Trim() method, 82
Truncate member, FileMode enumeration, 124
type indicators, 69
type inheritance, 147, 152, 157
Type property, Field CoClass, 199
types, 111. See also specifi c types

aggregation, 121–122
generics, 123
GUID (Global Unique Identifi er) of,

404–406

U

UI (user interface)
ArcMap, 145
customizing, ArcGIS for Desktop

applications, 37–41

bindex.indd 497bindex.indd 497 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

498

UID CoClass – Windows Vista

UID CoClass, 250
ulong data type, 69
Unifi ed Modeling Language (UML), 143
unions, creating, 284–287
UnionSomeFeatures.zip fi le, 284
UniqueValueRenderer class, 306–309
UniqueValueRenderer.zip fi le, 306
unitialized variables, 67
update cursors, 280, 284, 423–426, 427
Update() method, 280
user errors, 117. See also exception handling
user interface. See UI
using directives, importing namespaces, 113
UsingAddDataDialog.zip fi le, 189
UsingAOSDK.zip fi le, 56

V

Validate() method, FieldChecker CoClass,
218

value keyword, 96–97
Value property, IRow interface, 218
value types, 108

assignment operations, 108–109
comparison operations, 109
passing parameters between method calls,

109–111
variables, 66–67. See also data types

assignment operations, 108–109
case sensitivity, 65
comparison operations, 109
declaring, 67
fl ag, 70
local, 95
operations on, 71–75
private, 90, 95, 97
public, 90, 94, 95
unitialized, 67

VBA (Visual Basic for Applications), 36, 60
vector data renderers, 300–302

ClassBreaksRenderer, 309–313

ScaleDependentRenderer, 313–315
SimpleRenderer, 302–306
UniqueValueRenderer, 306–309

vector models, 20
verbatim strings, 70
VerySimpleCustomComponent.zip fi le, 456
viewers (desktop), 13, 18
virtual globes, 13, 18
Visible property, ILayer interface,

176–177
VisibleFeatures.zip fi le, 234
Visual Basic for Applications (VBA), 36, 60
Visual Studio, 64

debugging with, 113–116
Object Browser, 154, 155, 156–162
projects, 53
references, 53
solutions, 53

void keyword, 90

W

WCS (Web Coverage Service), 11, 27-28, 33
Web Feature Service (WFS), 11, 27-28, 33
web GIS applications, 11–13, 18
Web Map Service, 11–12, 33
Well Known ID (WKID), 410
WFS (Web Feature Service), 11, 27-28, 33
WhereClause property, QueryFilter object,

232–233
while statement, 78, 79–80
whole classes, 147
widening data types, 83–84
Windows 7

application confi guration templates, 41
local well-known folders, 48, 453

Windows Presentation Foundation (WPF)
applications, creating, 72–75

Windows Vista
application confi guration templates, 41
local well-known folders, 48, 453

bindex.indd 498bindex.indd 498 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

499

Windows XP – ZipPackage class

Windows XP
application confi guration templates, 41
local well-known folders, 48, 453

WindowsBase.dll fi le, 133
WKID (Well Known ID), 410
WMS (Web Map Service), 11–12, 33
workspace objects, 388–389
WorkspaceFactory class, 207–208
wormhole, 153
WPF (Windows Presentation Foundation)

applications, creating, 72–75
Write() method, 124–125
writing fi les, 123–135

X

XAML (Extensible Application Markup
Language), 75

XML (Extensible Markup Language)
, 23, 28–29, 33GeoRSS, 23, 28–29, 33
GML. See GML
KML. See KMLcomments, 93

XSD, relationship with GML, 28

Z

ZipPackage class, 133

bindex.indd 499bindex.indd 499 26/02/13 12:46 PM26/02/13 12:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!
Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only and

is valid for the fi rst 6 consecutive monthly billing cycles.

Safari Library is not available in all countries.

With Safari Books Online, learn without limits

from thousands of technology, digital media and

professional development books and videos from

hundreds of leading publishers. With a monthly or

annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari To

Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on

today’s hottest topics

• Sample code to help accelerate a wide variety of

software projects

• Robust organizing features including favorites,

highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

badvert.indd 500badvert.indd 500 26/02/13 1:00 PM26/02/13 1:00 PM

www.it-ebooks.info

http://www.safaribooksonline.com/wrox
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Beginning ArcGIS® for Desktop Development Using .NET
	Copyright
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	Part I: The Basics
	Part II: .NET Programming Fundamentals
	Part III: ArcObjects Programming

	What You Need To Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Part I: The Basics
	Chapter 1: Why Geospatial Is Special
	A Tour of Geospatial Data
	Why Geospatial Is Special
	Various Kinds of GIS Software
	Server GIS
	Desktop GIS
	Developer GIS
	Mobile GIS

	Geospatial Data Models and Storage
	Raster
	Vector
	Geospatial Data as Text or Binary File
	Geospatial Data in Georelational Models
	Geospatial Data Inside Spatial DBMS
	Geospatial Data in XML Structures

	Esri Geodatabase
	Personal Geodatabase
	File Geodatabase
	ArcSDE Geodatabase

	Summary

	Chapter 2: Introduction to ArcGIS for Desktop Applications Customization
	Four Ways to Customize ArcGIS for Desktop
	Customizing the User Interface
	Scripting
	Desktop Add-Ins
	ArcObjects SDK
	Summary

	Part II: .NET Programming Fundamentals
	Chapter 3: .NET Programming Fundamentals, Part I
	The .NET Framework
	The C# Language
	A Brief History of C#
	Basic Concepts
	Variables and Data Types
	Nullable Data Types
	Operations on Variables
	Arrays
	Decision-Making
	Iteration
	Object Manipulation
	Data Type Conversion
	Enumerations
	Methods

	Introduction to Object-Oriented Programming in C#
	Object-Oriented Programming in Action
	Defining Properties
	Defining Methods
	Defining Constructors

	Summary

	Chapter 4: .NET Programming Fundamentals, Part II
	Overview of Object-Oriented Programming Concepts
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	Reference Types and Value Types
	Assignment Operations
	Comparison Operations
	Passing Parameters between Method Calls

	Brief Explanation of All .NET Types
	Namespaces and Assemblies
	Debugging Using Visual Studio
	Structured Exception Handling
	Casting Objects
	Aggregation Using Collections
	The ArrayList
	Generics

	Reading and Writing Files
	Summary

	Part III: ArcObjects Programming
	Chapter 5: Understanding ArcObjects Object Model Diagrams
	What Is ArcObjects?
	Interface-Based Programming in Brief
	Understanding Object Model Diagrams
	Types of Classes in ArcObjects
	Relationships between Classes
	Members of Interfaces
	Interface Inheritance
	Wormhole
	Additional Tips for Using Object Model Diagrams
	Where to Start with ArcObjects
	How to Find an Associated Member

	Summary

	Chapter 6: Accessing Maps and Layers
	Introduction to Maps and Layers In ArcObjects
	General Properties of All Layers
	Working with FeatureLayers
	Working with RasterLayers
	Adding an Existing *.lyr File to a Map
	Adding *.lyr Files Using GxDialog
	Saving *.lyr and *.mxd Files
	Summary

	Chapter 7: Working with Tables and FeatureClasses
	Accessing Tables and FeatureClasses
	Adding and Deleting Fields
	Adding Existing FeatureClasses, Tables, and Rasters to a Map
	Deleting an Existing FeatureDataset, FeatureClass, Table, or Raster
	Creating Tables and Rows

	Summary

	Chapter 8: Subsets of Records
	Using Object Model Diagrams for Selecting Features and Rows
	Working with Existing Selections
	Selecting Rows and Features
	Accessing a Subset of Records
	Simple Statistics of Features
	Some Important Points about Using Cursors

	Displaying Subsets of Geospatial Data
	Summary

	Chapter 9: Constructing and Using the Geometry of Features
	Object Model Diagram for the Geometry of Features and Graphics
	Displaying Geometries on the Screen
	Creating and Drawing Points
	Creating and Drawing Multipoints
	Creating and Drawing Polylines
	Creating and Drawing Polygons

	Creating a New Feature and Editing an Existing Feature's Geometry
	Working with Spatial Operators
	Examining Spatial Relationships
	Common Geoprocessing Operations
	Determining the Nearest Points and Distance

	Length, Area, Centroid, and Envelope of Geometries
	Summary

	Chapter 10: Rendering Geospatial Data and Using Hyperlinks and MapTips
	Geospatial Data Display
	Color and ColorRamp Classes
	Symbols
	Renderers for Vector and Raster Geospatial Data

	Going beyond Simple Display
	Simple and Advanced MapTips
	Hyperlinks

	Summary

	Chapter 11: Labeling, Exporting ActiveView, and Working with Elements
	Labeling
	Labeling with the Default Labeling Engine
	Labeling with the Maplex Labeling Engine

	Exporting the ActiveView
	Working with Elements
	Adding GraphicElements
	Adding FrameElements

	Summary

	Chapter 12: Geoprocessing with Tools and Models
	ArcObjects and the Geoprocessing Framework
	Running Geoprocessing Tools
	Running Custom Tools

	Opening a Tool's Dialog Box in Code
	Geoprocessing in the Background
	Bach Processing
	Can I Manage the Execution of Geoprocessing Tools?

	Summary

	Chapter 13: Feature Data Management
	Use of GUID in ArcObjects
	Working with the Geodatabase Model
	Creating Geodatabases
	Creating FeatureDatasets and FeatureClasses

	Working with Features
	Creating New Features
	Modifying Existing Features

	Summary

	Chapter 14: Advanced Topics in ArcObjects Programming and Deployment
	Sharing State and Functionality between Components
	Event Handling in ArcObjects
	Application Extension
	Add-In Deployment
	Preparing for Release
	Add-In File Structure
	Distributing and Installing an Add-In

	Custom Component Deployment
	Creating an Installer for Custom Component

	Summary

	Appendix: Answers to Chapter Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Index
	Advertisement

ATCGIS for Desktop

Development
Using NET

