
Evaluation of Narrowband and 
Broadband Vegetation Indices for 

Determining Optimal Hyperspectral Wavebands 
for Agricultural Crop Characterization 

Prasad S. Thenkabail, Ronald B. Smith, and Eddy De Pauw 

Abstract 
  he main goal of the study was to determine optimal waveband 
centers and widths required to best estimate agricultural crop 
characteristics. The hyperspectral narrowband data was ac- 
quired over 395 to 1020 nanometers using a 1.43-nanometer- 
wide, 430 bands, hand-held spectroradiometer. Broadband 
data were derived using a Landsat-5 Thematic Mapper image 
acquired to correspond with field spectroradiometer and 
ground-truth measurements. Spectral and biophysical data 
were obtained from 196 sample locations, including farms and 
rangelands. Six representative crops grown during the main 
cropping season were selected: barley, wheat, lentil, cumin, 
chickpea, and vetch. Biophysical variables consisted of leaf 
area index, wet biomass, dry biomass, plant height, plant 
nitrogen, and canopy cover. 

Narrowband and broadband vegetation indices were com- 
puted and their relationship with quantitative crop charac- 
teristics were established and compared. The simple narrow- 
band two-band vegetation indices [TBVI) and the optimum 
multiple-band vegetation indices [OMBVI) models provided the 
best results. The narrowband TBW and OMBvI models are 
compared with six other categories of narrow and broadband 
indices. Compared to the best broadband TM indices, TBW 
explained up to 24 percent greater variability and OMBVI 
explained up to 27 percent greater variability in estimating 
different crop variables. A Predominant proportion of crop 
characteristics are best estimated using data from four nar- 
rowbands, in order of importance, centered around 675 
nanometers [red absorption maxima), 905 nm (near-infrared 
reflection peak), 720 nm [mid portion of the red-edge), and 
550 nm [green reflectance maxima). The study determined 12 
spectral bands and their bandwidths [Table 5) that provide 
optimal agricultural crop characteristics in the visible and 
near-infrared portion of the spectrum. 

Introductlon, Background, and Rationale 
Until recently, Earth Observation Satellites carried only broad- 
waveband sensors such as the Landsat Enhanced Thematic Map- 
per (nu+), Thematic Mapper (TM), Multispectral Scanner (MSS), 
Le Syst6m6 pour l'observation de la terre (SPOT) high resolution 

visible (HRv), and the Indian Remote Sensing (IRS) Linear Imaging 
Self-scanning (L~ss). These sensors have known limitations in 
providing adequate information on terrestrial ecosystem charac- 
teristics such as in providing accurate estimates of biophysical 
and yield characteristics of agricultural crops [e.g., Richardson et 
al., 1992; Weigand et al., 1992; Gong et al., 1995; Thenkabail et 
al., 1995; Carter, 1998; Lyon et al., 1998; Shaw et al., 1998; Asner 
et al., 2000), and crop type or species identification (Asner et al., 
2000). Limitations such as these have led to an increasing interest 
in the narrow-waveband sensors, which are expected to provide 
information that is more detailed andlor enable a host of new 
applications. The recent successful launches of Terra, the Earth 
Observing System (EOS) flagship satellite, and the Earth Observ- 
ing-1 (EO-1) usher a new era of hyperspectral observations of the 
Earth from space. EO-1 carries the Hyperion sensor with 220 nar- 
rowbands, each of 10-nm width. Upcoming hyperspectral sensor 
launches also include 105 narrow wavebands in the Australian 
Resource Information and Environment Satellite (ARIES), and the 
Warfighter-1 with 200 narrow wavebands in a sensor onboard the 
United States private industry satellite Orbview-4. All these sen- 
sors cover the 400- to 2500-nanometer spectral range. In the past, 
there has been significant experience in the use of near-continu- 
ous spectra from imaging spectrometers such as the NASA- 
designed Airborne Visible-Infrared Imaging Spectrometer 
(AVIRIS) and Compact Airborne Spectrographic Imager (cASI). 
The Hyperion and other hyperspectral sensors will produce very 
large data volumes, which make it imperative that newer meth- 
ods and techniques be developed to handle these multi-dimen- 
sional datasets. 

Even better will be to focus on the design of an optimal sen- 
sor for a given application by dropping redundant bands. Opti- 
mal hyperspectral sensors will help reduce data volumes, 
e l i d a t e  t6e problems of high-dimensionality of hyperspectral 
datasets. and make it feasible to aoolv traditional classification 
method; to a few selected bands bands) that capture 
most of the information regarding crop characteristics. Future 
generations of satellites are either likely to carry specialized opti- 
mal sensors focused on gathering data for targeted applications, 
or to carry a narrow-waveband hyperspectral sensor such as 
Hyperion from which users with different application needs can 
extract appropriate optimal wavebands. Thereby, knowledge of 
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application specific "optimal bands" for multi-dimensional data- 
sets such as Hyperion and Warfighter-1 is mandatory in order to 
reduce costs in data analysis and computer resources. Table 1 
compares the spectral and spatial resolution of narrowband and 
broadband data used in this study with the characteristics of 
well-known narrowband AWS airborne and recently launched 
Hyperion space-borne sensors. A number of recent studies have 
indicated the advantages of using discrete narrowband data fkom 
specific portions of the spectrum when compared with broad- 
band data in order to arrive at optimal quantitative or qualitative 
information regarding crop or vegetation characteristics (e.g., 
Elvidge and Chen, 1995; Carter, 1998; Blackburn, 1999; and 
Thenkabail et al.. 2000b). 

The Main gdal of this paper was to determine the optimal 
hyperspectral narrow wavebands, in the visible and near-infra- 
red portion of the spectrum, that best characterize agricultural 
crop characteristics. Vegetation indices derived from narrow and 
broad wavebands were used to establish relationships with crop 
biophysical variables and yield. Data were acquired from 176 
farmer- or researcher-managed farms and 20 marginal land (or 
rangeland) plots in the arid and semi-arid environments of Syria 
using (1) narrow waveband data from 512 1.43-nanometer-wide 
discrete narrowbands in the visible and NIR portion (350 to 1050 
nanometers) of the spectrum, and (2) broad waveband data from 
the six non-thermal bands (450 to 2350 nm) of the Landsat-5 TM 
sensor. The study was conducted during April and May, 1998 
during the main (spring) cropping season. 

Study Area 
The study area is located around Aleppo, Syria in the desert 
margins of southwest Asia where agriculture faces complex 
challenges due to inadequate rainfall. The long-term mean rain- 
fall during the effective growing season of November through 
May is 373 mm. Approximately 50 percent of the work force 
earns its living directly from agriculture, placing great stress on 
the sustainability of land and water resources. Worldwide, an 
estimated one billion people currently live in countries and 
regions included in the desert margins with population growth 
rates of 2.1 percent in the Central Asian Republics and 3.6 per- 
cent in the Mediterranean regions. The bounding coordinates 
ofthe study area are, in Syria: upper left: 36.30N, 36.503; upper 
right: 36.30N, 37.433; lower right: 35.56N, 37.433; and lower 
left: 35.56N, 36.503. The study area consists of researcher- 
managed and farmer-managed farms growing mainly cereals 

(wheat, barley) and legumes (vetch, lentil, chickpea) intermin- 
gled with cumin, fallow farms, and rangelands in the main 
crop-growing season. 

Methods and Procedures 
Narrowband, broadband, and ground-truth data were extracted 
from 196 specific locations spread across the study area in 
farmer- and researcher-managed farms and marginal lands. 
Sample sites were located using a GarminTM Global Positioning 
System (GPS) receiver and consisted of barley (44 sample loca- 
tions), wheat (64), lentil (23), cumin (IT), chickpea (14), vetch 
(14), marginal lands (20), and fallow farms or top soils (9). 

Hyperspectral Data 
Narrowband data were gathered to coincide with Landsat-5 TM 
broadband acquisition. Narrowband data were acquired from 
13 April through 05 May 1998 using a hand-held spectroradio- 
meter manufactured by Analytical Spectral DevicesT", which 
provided data in 512 1.43-nm-wide discrete narrowbands in 
the visible and near-infrared (332- to 1064-nm) bands. A de- 
tailed description of the spectroradiometer instrument is given 
by FieldSpec (1997), Thenkabail et al. (1999), and Thenkabail 
et al. (2000). Reflectance using the spectroradiometer is calcu- 
lated by 

Reflectance 

= ((target-dark current)/(reference-dark current))*loO percent. 

Spectral data from the spectroradiometer and quantitative 
and qualitative data on crops and on soils were obtained from 
196 ground-truth locations spread across the study area. Meas- 
urements were made at a nadir-looking 18-degree field of view 
(FOV) between 1000 and 1100 local time each day to keep the 
sun angle effects consistent. All measurements were taken 
under bright clear-sky conditions. All canopy-level measure- 
ments were acquired at a height of approximately 1.20 m above 
the ground with a 38-cm-diameter footprint on the ground, 
resulting in an area of 1134 cm2 observed on ground. Each 
acquired spectra included an average of ten individual meas- 
urements that were automatically acquired by the FieldSpec 
spectroradiometer. Narrowband reflectivity obtained at ground 
level is mostly free of atmospheric effects. The mean hyper- 
spectral characteristics of six agricultural crops, rangelands, 

- - 

spectral number spatial 
wavelength resolution of bands resolution area per pixels per 

Sensor (nanometers) (nanometers) (#I (meters) pixel (mZ) hectare (#) 

1. Narrow band data for this 395-lolo* 1.43 430 0.38** 0.1133** 88219 
study from 
Spectroradiometer 
(visible and NIR) 

2. Broad band data for this 
study from Landst-5 TM 

3. Hyperion 
4. AVIRIS 

band 1: 70 nm 
band 2: 80 nm 
band 3: 60 nm 
band 4: 140 nm 
band 5: 20 nm 
band 7: 27 nm 

400-2500 10 220 30 900 
400-2500 10 224 20 400 

Note: *Visible and near infrared (VNIR) spectroradiometer is in the 350- to 1050-nm range. However, only the 395- to 1010-nm range of the 
spectrum was considered in order to avoid the significant noise in the early and late waveband portions. 
**Area when the spectroradiometer was held at 1.2 meter above ground level with an 18 degree field of view (FOV), resulting in a diameter of 
0.38 m and area (mZ) of 0.113354 mZ (or 1133 cmZ). 
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and fallow farms are plotted in Figure 1. The representative 
growth stages of crops are varied from late vegetative to critical 
in most cases (Figure 1). 

Broadband Data 
Broadband data were extracted from an 06 April 1998 Landsat- 
5 TM image. Mean digital values for the six non-thermal bands 
were extracted from a 3- by 3-pixel area from each of the 196 
sample site locations. The GPS location is centered on this 3- by 
3-pixel area. Broadband data were also derived simulating the 
discrete narrowband data of the spectroradiometer (which are 
free from atmospheric effects because the data are acquired at 
ground level). Preliminary investigations showed that the sim- 
ulated broadband data provided results significantly similar 
to atmospherically resistant at-satellite exo-atmospheric 
reflectance-based Landsat-5 TM broadband data in their rela- 
tionships with agricultural crop variables. In addition, in a 
recent study Thenkabail et al. (1999; 2000b) performed a 
detailed comparison of the simulated broadband TM data with 
the narrowband data. Therefore, only the broadband data 
derived from the Landsat-5 TM sensor have been reported on 
throughout this paper and will simply be referred to as "broad- 
band" data. The digital numbers of the broadband data are con- 
verted to radiance and at-satellite exo-atmospheric reflectance 
before being compared with narrowband data. 

Digital Number to Radiance and AtSatelllte Exatmospheric Reflectance 
Broadband digital counts are converted to at-satellite exo- 
atmospheric reflectances using the following procedure. Mean 
Landsat-5 TM digital numbers from the 3- by 3-pixel locations 
were first converted to spectral radiance (Price, 1987) using 
the equation 

where Ri is the spectral radiance in mW ~m-~sr- ' ,m-l,  ai is the 
gain or slope in mW ~m-~sr-lprn-l, pj is the bias or intercept in 
mW ~m-~s r -~pm- l ,  and DNi is the digital number of each pixel 
or mean of a number of pixels in TM bands, where i = 1 to 5 and 
7 (except the thermal band 6). 

The effective at-satellite apparent reflectance or exo- 
atmospheric reflectance (p,-unitless) is calculated using the 
equation 

where spectral radiance (Ri) is given by Equation 1, the Earth- 
sun distance (d) is expressed in astronomical units (A,), 9 is 
the solar zenith angle (which is 90 degrees minus the sun eleva- 
tion or sun angle when the scene was recorded as given in the 
image header file), and F, is the solar flux or exatmospheric irra- 
diances (Markam and Barker, 1985; Markam and Barker, 1987). 
This provides the nadir reflectance from both the surface and 
the atmosphere above it and normalizes the effects of solar ele- 
vation and Earth-sun distance. This is also referred to in the lit- 
erature variously as planetary albedo or exatmospheric 
reflectance. 

Broadband vegetation indices are computed using at-satel- 
lite exo-atmospheric reflectances. 

GrounbTruth Data 
The crop biophysical and yield data were obtained from 196 
locations during April and May 1998 when most crops were in 
critical, or tillering, or late vegetative growth phases. The major 
crops were (Figure 1) barley (Hordeum vulgare L.; sample size 
44 ,  wheat (Triticurn aestivum L. or Piticum durum Desf.; 64), 
lentil (Lens esculenta Moench. or Lens orientale (Boiss.) 
Schmalh. or Lens culinaris Medikus; 23), cumin (Cuminurn 

cyminum L.; 171, chickpea (Cicer arietinurn L.; 141, and vetch 
(Vicia narbonensis L.; 14). Measurements were also taken from 
marginal lands (20) and fallow farms or top soils (9). 

A representative sample area in each farm field was deter- 
mined by the ground-truth team by observing the farm, choos- 
ing a representative plot area within the farm, and then 
throwing the 34- by 34-cm wooden block for a random location 
within the representative plot. Above-ground plant samples 
within a 34- by 34-cm (1156 cm2) wooden block were chosen 
for laboratory analysis. In the laboratory, plant samples were 
analyzed for leaf area (m2), wet weight (kilograms), dry weight 
(kilograms), and plant nitrogen content (percent). Leaf area was 
obtained by running the leaves over a LI-COR 3100 leaf area 
meter. The leaf area (cm2) obtained from plants in a representa- 
tive area of 1156 cm2 of farmland was converted into leaf area 
index (m2/m2). Plants were cut and weighed on a simple 
weighing machine to obtain the weight per 1156 cm2. This 
weight was converted into biomass (kg/m2). Crop yield was 
obtained only for selected wheat farms by determining the 
after-harvest actual yield measurements (tomes per hectare). 
Above ground plant height (PLNTHT) was measured directly in 
the field. Each plant sample was dried in an oven at 70°C, and 
dry weights were measured and then converted into dry bio- 
mass (kg/m2). The dried plants were crushed and assessed for 
plant crued protein (percentage) and nitrogen (percentage) for 
all crops and marginal lands. The mean nitrogen content (in 
percent) was Vetch (3.24), lentil (2.7), wheat (1.66), barley 
(1.17), chickpea (3.01), cumin (3.13), and marginal lands (1.45). 
The canopy cover was estimated by eye, separately by two field 
scientists. The mean canopy cover (in percent) was then calcu- 
lated to be vetch (88), lentil (go), wheat (97), barley (97), 
chickpea (69), cumin (48), and marginal lands (68). 

Hyperspectral and Multispectral Vegetation Indices 
There is no single best approach for determining the optimal 
number of narrow wavebands required to provide best esti- 
mates of agricultural crop characteristics. In the past, research- 
ers have used reflectance from individual narrowbands 
(Mariotti et al., 1996), various ratio indices (Aoki, 1981; Carter, 
1994; Lichtenthaler et al., 1996; Lyon et al., 1998), derivatives 
of reflectance spectra (Curran et al., 1991; Elvide and Chen, 
1995) or a combinations of these (Thenkabail et al., 1999), prin- 
cipal component analysis (Clevers, 1999; Asner et al., 2000; 
Thenkabail, 2002), discriminant analysis (Vaesen et al., 2001; 
Thenkabail, 2002), and the linear mixture modeling approach 
(Elmore et al., 2000; Mass, 2000). The focus in this paper will 
be to conduct a rigorous evaluation of narrowband versions of 
(1) two-band vegetation indices (TBVI) and (2) optimum multi- 
ple-band vegetation indices ( o ~ w )  in establishing relation- 
ships with agricultural crop growth and yield characteristics. 
Broadband versions of TBW and o m m  as well as six other 
broadband indices and their narrowband versions were com- 
puted, discussed, and compared with TBVI and omvr.  

T w d a n d  Vegetation Indices (TBVI) (Thenkabail et al., 2000b; this paper) 
The TBVI for narrow bands i and j will be 

where i, j = 1, ..., N, where Nis the number of narrow bands, 
i.e., 430 (each 1.43-nm-wide band spread over 395 nm to 1010 
nm), and R is the reflectance of the narrow bands. Availability 
of hyperspectral data in 430 (N) discrete narrow wavebands 
facilitates the computation of N X N = 184,900 narrow-wave- 
band NDMS for any one crop variable. In comparison, the seven 
Landsat TM bands have just 49 (7 X 7) possible indices. How- 
ever, it will suffice to calculate narrow-waveband NDVIS only 
below the diagonal of the 430 by 430 matrix, because values 
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Figure 1. Average spectral characteristics of six crops and marginal lands. Figure shows (a) wheat and barley, (b) lentil and vetch, (c) chickpea and cumin, and 
(d) marginal lands. Spectral profiles of fallow farms are shown in all four plots. 



above the diagonal are the transpose of values below the diago- 
nal. All computations were performed by writing simple NDVI 
algorithms for all possible combinations of two-band indices 
using the Statistical Analysis System (SAS, 1997a; SAS, 
1997b). 

Broadband versions of TBW were computed from Equation 
3 using data from the six non-thermal Landsat-5 TM bands. 
Aggregating discrete narrowband data over the required band- 
widths can also derive broadband data. The narrowband and 
broadband TBWS were then related to crop biophysical vari- 
ables using the SAS (SAS, 1997a; SAS, 1997b). L' inear or non- 
linear models were fitted based on the plot trends and best-fit 
R2 values. 

Optlmum MultlpleBand Vegetatlon Indices (OMBVI) (Thenkabail et al., 2000b; 
this paper) 
The narrowband and broadband versions of OM~VI were com- 
puted using the following model equation: 

where ommi  is the crop variable i, Rjis the reflectance in bands 
j ( j  = 1 to Nwith N = 430), and aij is the coefficient for reflect- 
ance in band jfor the crop variable i. Of several statistical meth- 
ods available to run piecewise linear regression models, the 
stepwise MAXR procedure is considered the best (SAS, 1997a; 
1997b) and hence was used in this study. The MAXR method 
begins by finding the variable (Rj) producing the highest coeffi- 
cient of determination (R2) value (SAS, 1997a; SAS, 1997b). 
Then another variable, the one that yields the greatest increase 
in R2 value, is added. Once the two-variable mode1 is obtained, 
each of the variables in the model are compared to each variable 
not in the model. For each comparison, MAXR determines if 
removing one variable and replacing it with the other variable 
increases R2. After comparing all possible choices, the one that 
produces the largest increase in R2 is made. Comparisons begin 
again, and the process continues until MAXR finds that no 
replacement could increase R2. The two-variable model thus 
achieved is considered the best two-variable model. Another 
variable is then added to the model, and the comparing-and- 
switching process is repeated to find the best three-variable 
model, and so forth (SAS, 1997a; SAS, 199713) until the best 
n-variable model is determined. 

NIR- and Red-Based Normalized Difference Vegetation lndlces (NDVI) (Rouse et al., 
1973; Jackson, 1983) 
The NDvI is computed using the following equation: 

NDVI = (NE - RED)/(NIR + RED) 

where, for broad bands (Landsat-5 w): RED (TM~):  630 to 690 
nanometers, NIR (TM~): 760 to 900 nm and, for narrow-bands 
(hyperspectral): RED (A, = 675 nm): 668 to 683 nanometers 
(AAl = 15 nm), NIR (A2 = 905 nm): 898 to 913 nm (AA, = 15 nm); 
where A, is the band center and AA, is the bandwidth. Prelimi- 
nary studies indicated a narrow bandwidth of about 15 nm to 
be optimal in NIR and RED and was hence chosen. 

Transformed Soll Adjusted Vegetation lndlces (TSAVI) (Baret et al., 1989) 
The TSAVI is computed using the following equation: 

TSAVI = a*(NIR - a*RED -  RED + a*NIR - a*b) (6) 

where a is the slope and b is the intercept of soil lines. Forty- 
three spectral measurements of soils were taken using the 
Spectroradiometer at the topsoil. The slopes (a) and intercepts 

(b) of the soil lines were computed by plotting mean reflectan- 
ces for broadbands and narrowbands using RED and NIR band- 
widths as provided for in Equation 5 above. These are fitted 
using the equation NIR = a* RED + b. 

Atmospherically Resistant Vegetation lndices (ARVI) (Kaufman and Tanre, 1992) 
The ARVI is computed using the following equation: 

ARVI = (NIR - rb ) / (m + rb) (71 

where rb = RED - gamma * (RED - BLUE) and in which 
gamma = 1 and BLUE = TM1. It was not necessary to compute 
ARVI for narrowbands because atmospheric effects were not sig- 
nificant for hyperspectral measurements made at ground level. 

Middle Infrared-Based Vegetation lndices (MIVI) (Thenkabail et al., 1995) 
The MIVI is computed using the following equation: 

MIVI = (mi - RED)/(MIRI + RED) 

where ml (TM~) :  1550 to 1750 nm. TM5 provided the most 
information on crop growth and yield in a study of corn and 
soybeans (Thenkabail et al., 1994; Thenkabail et al., 1995). 
Therefore, an NDVI involving TM5 was selected. The hyper- 
spectral observations were only in the visible and NIR and, 
hence, MIVI was computed only for broadbands. 

Tassel-CapBased Greenness Vegetation lndlces (TCGVI) (Jackson, 1983) 
The Gram-Schmidt process (Jackson, 1983) was used to com- 
pute n-dimensional indices. The second component will pro- 
vide TCGVI. Tassel cap equations were computed using the six 
non-thermal bands of the Landsat-5 TM image of 05 April 1998 
covering the study area. TCGVI was not computed for nar- 
rowbands because it was beyond the scope of this paper. 

Wetness (first component) 

Greenness (GVI) (second component) 

TCGVI = -TM1*0.2728 - TM2*0.2174 - TM3*0.5508 

Brightness (third component) 

TCBVI = TMl"0.1446 + TM2*0.1761 + TM3*0.3322 

Prlnclpal Component Vegetation lndices (PCVI) (thls paper) 
Principal components analysis (Jensen, 1986) was used to 
reduce many bands of broadband and narrowband data to a 
few bands. Each principal component is computed using factor 
loadings and band values. The first two components explained 
between 86 and 96 percent of all variability in TM and hyper- 
spectral data (Thenkabail, 2002). Using the weightings of the 
first principal component, new principal component band 1 
brightness values (PCAIBV) are calculated. Similarly, using the 
weightings of the second principal component, new principal 
component band 2 brightness values (PCABBV) are calculated. 
For example, digital numbers of six TM bands for field number 
112 (barley crop) were 57,24,24,73,52, and 18. T h e p c ~ i  coef- 
ficients were -0.0564,0.42323,0.4455,0.44708,0.45723, and 
0.45857. Therefore, the new brightness value, PCAlBV, for bar- 
ley field number 112 will be 82.3019. Using the new principal 
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component bands 1 and 2, a principal component vegetation 
index was computed: i.e., 

Results and Discussions 
Spectral Characterlstlcs 
Mean spectral plots of six agricultural crops, marginal lands, 
and soils illustrate several unique plant characteristics at spe- 
cific portions of the spectrum (see Figures l a  through ld). The 
cereal crops (wheat and barley) had erectophile (about 65 de- 
grees) structure resulting in a steep slope in the near-infrared 
(NIR) spectra as seen in the 740- to 940-nanometer range (Figure 
la). Reflectivity in the visible spectrum range of 450 to 700 nm 
was dramatically different for wheat when compared with bar- 
ley (Figure la). This was due to growth stage differences with 
critical growth phases for wheat when compared to senescing 
for barley. As on 06 April 1998 (date of acquisition of the 
image), wheat was greener than barley. Barley was senescing 
and was a mixture of brown and green, resulting in dramati- 
cally higher visible reflectance for barley when compared with 
wheat. Two of the legumes, lentil and vetch, had very high NIR 
reflectance and very high red absorption (Figure lb). There are 
number of reasons for this. The lentil and vetch are in late vege- 
tative vigorous growth phases with mean canopy cover of 
about 90 percent. Both are nitrogen fixation crops with a rela- 
tively high plant nitrogen content of 3.24 percent for vetch and 
2.70 percent for lentil. Compared to legumes, the plant nitrogen 
in wheat (1.66 percent) and barley (1.17 percent) was signifi- 
cantly lower. Lentil, vetch, chickpea, and cumin are signifi- 
cantly shorter and greener than wheat or barley, which were in 
later phenological growth stages. Furthermore, the planophile 
structure of legumes (about 35 degrees) contributes to a near 
flat NIR reflectivity (referred to as NIR shoulder) in the 740- to 
940-nanometer range. Soil background effects were significant 
for (1) cumin with only 48 percent mean canopy cover, and (2) 
chickpea with 69 percent canopy cover. This resulted in rela- 
tively low NIR reflectance and high visible reflectance for these 
crops (Figure lc). Marginal lands were amixture of various lev- 
els of green, and dry biomass. They often have significant bar- 
ren patches andlor dry and green patches intermingled. These 
conditions resulted in steep NIR and visible reflectance slopes, 
a high degree of sensitivity in the red-edge (700 to 740 nm), 
higher reflectance in the visible, and a very mild "trough" in the 
940- to 1010-nm moisture sensitive region (Figure Id). In the 
675- to 700-nm range, soil-crop contrast is significantly higher 
for healthy and vigorous crops (e.g., Figure lb) when compared 
with crops or vegetation that are senescing (e.g., barley in Fig- 
ure la) or with significant soil background effects (e.g., cumin 
or chickpea in Figure lc) or with a mix of dry and green vegeta- 
tion conditions (e.g., rangelands in Figure Id). 

In the following section, various vegetation indices are 
computed from the reflectance spectra. Broadband and nar- 
rowband versions of the best two-band NDVI-type vegetation 
indices (TBVI) and optimum multiple-band vegetation indices 
(OMBVI) were computed and compared with six other types of 
vegetation indices (NDVI, TSAVI, ARVI, MIVI, TCGVI, and PCVI). 

Narrowband and Broadband TBVl and Crop Variables 
The relationships between narrowband and broadband TBVI 
with crop biophysical variables (wet biomass-WBM, dry bio- 
mass-DBM, leaf area index-LAI, and plant height-PLNTHT) were 
established and their coefficient of determination (R2) was 
determined for the six crops (Table 2). TBVI was also related to 
plant nitrogen and canopy cover, but these relationships were 
generally not as strong as with WBM, DBM, LAI, and PLNTHT. 
Hence, results with plant nitrogen and canopy cover will not 
be reported. Relationships were also established for wet and 

dry biomass of marginal lands (Table 2). A contour plot of the 
R2 values for narrowband wavelength pairs A, (430 bands in 395 
to 1010 pm) and A2 (430 bands in 395 to 1010 pm) are plotted 
and illustrated for (1) LAI of barley (values below the diagonal 
in Plate 1) and (2) LAI of wheat (values above the diagonal in 
Plate 1). For a given crop variable, it will suffice to display the 
matrix only below (or above) the diagonal of the matrix be- 
cause the R2 values above and below the diagonal of the matrix 
are symmetrical. Only R2 values above 0.4 are plotted for clar- 
ity. These plots show the waveband combinations that provide 
the best indices (see various "bulls-eye" formations in Plate 1) 
for relationships with crop biophysical variables. For example, 
waveband centers for the best TBVI index for barley LAI were 
720 nm and 815 nm, providing R2 in the range of 0.76 to 0.79 
(Plate 1) with the precise R2 value of the best index being 0.79 
(Table 2). Similarly, the best estimates of wheat LA1 were 
obtained using two narrowbands centered at 680 nm and 910 
nm (Plate I), providing an R2 value of 0.74 (Table 2). Similar A, 
versus A, plots were used to determine the best waveband com- 
binations that estimated other biophysical variables of the six 
crops and marginal lands (Table 2). Also computed were the 
best possible combinations of Landsat-5 TM broadband T B ~  
indices (Table 2). 

Narrowband TBW indices consistently performed better 
than their broadband versions by explaining one to 24 percent 
greater variability (with a mean of about 10 percent) in deter- 
mining various crop variables (Table 2). Generic relationships 
involving multiple crops that have a wide range of growing 
stages, growing conditions, and background effects are used to 
illustrate this. Compared to broadband relationships with bio- 
physical quantities (Figures 2a and 2b), the narrowband rela- 
tionships (Figures 2c and 2d) provide significantly better 
results because of their greater sensitivity to plant pigmenta- 
tion, canopy structure, and soil background effects, and their 
greater robustness to a complex mix of growing conditions and 
growth stages. As a result, the dynamic range of narrowband 
indices (Figures 2c and 2d) is better than the broadband indi- 
ces (Figures 2a and 2b). In general, one or more narrowband 
indices provide greater dynamic range and are more robust in 
accounting for variability in a wide range of conditions such as 
soil background effects, growth stages, and pigmentation lev- 
els, result-ing in significantly improved R2 values compared to 
the best broadband Landsat-5 TM indices. It should be noted 
that broadband data stretches from 450 nm to 2350 nm (non- 
thermal TM bands) and include mid-infrared bands ( T M ~  and 
T M ~ ) ,  where-as the narrowband data were acquired only at 395 
to 1010 nm. Therefore, the narrowband results are even more 
significant. 

Optimal narrowband bandwidths were determined from 
the A, versus A, plots (e.g., Plate 1) by observing the change in 
R2 value from the band centers. For example, for barley LAI, 
along A, the value of R2 remains constant from about 750 nm to 
880 nm with the center at 815 nm, resulting in a AA, = 130 nrn 
(Plate 1). However, along A, the value of R2 remains constant 
only for a very narrow width of about 10 nm (Ahz) with center at 
720 nm (Plate 1). The bandwidths were rounded off to the near- 
est 5s or 10s (e.g., 8.5 nm is rounded off to 10 nm). For wheat LAI 
(Plate I), both the A, (680 nm) and A, (910 nm) have a narrow- 
band width of about 20 nm (AA, = AA2) with an R2 value of 0.74. 
The best NIR- and red-based narrowband indices can be com- 
puted by taking a (1) very narrowband centered around 675 nm 
(AA = 15 nm) for red and (2) narrowband centered around 905 
nm or 920 nm (AA = 15 nm) for NIR. 

Optlmum Multiple-Band Vegetation Indices (OMBVI) and Crop Variables 
Using the MAXR procedure of SAS (1997), the best one-variable, 
two-variable, and three-variable OMEWI models were deter- 
mined for estimating wet biomass, dry biomass, leaf area index, 
and plant height of six crops (Table 3). The best one-variable 
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TABLE 2. WAVEBANDS CENTERS AND R2 VALUES FOR BEST TBVl MODELS. THE TWO-BAND VEGETATION ~NDICES (TBVlS) PROVIDING R2 VALUES FOR THE BEST 
MODELS USED I N  ESTIMATING VARIOUS BIOPHYSICAL VARIABLES 

Landsat-5 TM data Hyperspectral data Increased 

Best index Second best index Best index Second best index Third best index vaPiability 
explained by the 

Spectral Spectral spectral spectral spectral best hyperspectral 
band band band band band index when 

centers in centers in centers in centers in centers in compared with 
NDVI- NDVI-type NDVI- NDVI- NDVI- the best Landsat-5 

Crop Variable type index RZ index R2 R2 type index RZ type index RZ type index R2 TM index (percent) 

1. BarleyA (44) WBM TM3,TM4 0.75 TM2,TM3 0.69 675,820 0.84 495,525 0.80 455,840 0.78 9 
DBM TM3,TM4 0.76 TM2,TM4 0.65 670,910 0.81 675,760 0.80 550,568 0.75 5 
LA1 TM3,TM4 0.71 TM2,TM3 0.62 720,815 0.79 675,700 0.76 550,590 0.73 8 
PLNTHT TM2,TM3 0.44 TM3,TM4 0.40 670,905 0.45 675,575 0.43 410,920 0.40 1 

2. WheatA (64) WBM TM2,TM4 0.70 TM2,TM4 0.67 604,904 0.83 590,845 0.81 550,590 0.61 13 
DBM TM3,TM4 0:65 TM2,TM4 0.64 545,910 0.80 700,910 0.79 550,830 0.74 15 
LAI TM2,TM4 0.66 TM2,TM4 0.66 680,910 0.74 515,910 0.73 635,880 0.72 8 
PLNTHT TM3,TM4 0.37 TM2,TM4 0.36 437,880 0.41 550,880 0.39 715,860 0.34 4 

3. LentilA (23) WBM TM3,TM4 0.80 TM2,TM3 0.74 675,910 0.85 418,904 0.82 550,675 0.81 5 
DBM TM3,TM4 0.68 TM2,TM4 0.64 675,845 0.78 675,985 0.75 550,678 0.73 10 
LAI TM3,TM4 0.78 TMl,TM3 0.71 670,845 0.84 445,905 0.84 675,975 0.81 6 
PLNTHT TMl,TM3 0.26 TM3,TM4 0.24 675,910 0.50 680,980 0.49 646,680 0.48 24 

4. CuminB (17) WBM TM2,TM4 0.75 TM2,TM3 0.69 678,880 0.80 568,675 0.79 678,920 0.75 5 
DBM TM2,TM4 0.71 TM2,TM4 0.67 675,800 0.87 568,678 0.81 495,880 0.78 20 
LA1 TM3,TM4 0.70 TM1,TMS 0.64 568,661 0.85 678,775 0.83 490,845 0.83 15 
PLNTHT TM3,TM7 0.15 TM3,TM4 0.06 NS NS NS N A 

5. ChickpeaA (14) WBM TM3,TM4 0.86 TM2,TM4 0.79 568,678 0.95 670,810 0.95 495,820 0.94 9 
DBM TM3,TM4 0.72 TM2,TM3 0.68 750,965 0.91 760,775 0.91 535,620 0.89 21 
LAI TM3,TM4 0.78 TM2,TM3 0.71 720,840 0.92 495,840 0.91 550,680 0.89 14 
PLNTHT TM3,TM4 0.83 TM5,TM7 0.79 690,840 0.96 550,680 0.95 495,845 0.93 8 

6. VetchB (14) WBM TM3,TM5 0.74 TM3,TM4 0.73 675,820 0.82 418,661 0.70 520,604 0.63 8 
DBM TM3,TM5 0.72 TM2,TM4 0.65 715,910 0.84 550,880 0.72 525,575 0.67 11 
LA1 TM3,TM5 0.77 TM3,TM4 0.65 720,910 0.80 568,910 0.68 460,920 0.64 3 
PLNTHT TM1,TMB 0.11 TM5,TM7 0.11 668,682 0.24 965,982 0.28 765,965 0.13 13 

7. ~ a r g i n a l ~  (20) WBM TM2,TM3 0.87 TM3,TM4 0.83 672,906 0.89 568,675 0.80 418,525 0.77 2 
DBM TM2,TM3 0.78 TMl,TM3 0.82 680,908 0.80 437,910 0.76 550,682 0.69 2 

Note: A = Non-linear exponential models of the type Y = ~ * e ~ * ~ ;  B = Linear models of the type Y = a + b * x. NS = not significant, NA 
= not available. 

narrowband model explained 38 to 94 percent of variability 
across different crop variables (Table 3). This increased to 56 to 
98 percent for best two-variable models and 60 to 99 percent for 
the best three-variable models. In an overwhelming number of 
cases, further addition of independent variables only increased 
R2 values insignificantly. Hence, three bands are considered 
optimal. The addition of a third band often helps overcome the 
problem of saturation associated with two-band N ~ V I  type 
indices. However, the problem of "over fitting" (e.g., using 
more spectral channels than experimental samples to obtain a 
perfect R2 value) needs to be avoided while using OMBVI models 
(see Blackburn (1998) and Thenkabail et al. (2000b)). In com- 
parison, the best two or three Landsat-5 TM broadband omw 
indices explained 60 to 89 percent of crop variability (Table 3). 
Overall, the narrowband O M B ~  indices explained 1 to 27 per- 
cent greater variability than did the broadband O M B ~ I  indices. 
In estimating cumin M, the best three-variable narrowband 
OMBVI indices explained 22 percent greater variability when 
compared with the best broadband NDvr indices (Table 3). With 
only 48 percent canopy cover, cumin is subjected to significant 
soil background effects that are well modeled using nar- 
rowbands centered at 589 nm, 675 nm, and 904 nm, whereas 
the best broadbands fail to capture this variability (Table 3). 

The narrowband OMBW (Table 3) performed better than 
narrowband TBW (Table 2) nine times, poorer eight times, and 
was equal once (Table 3). The results demonstrate that some 
combination of two or three bands provides the best estimates 
of crop biophysical variables. The sensitivity of any particular 
portion of a waveband is a function of crop conditions, growth 
stages, and numerous other factors such as irrigation and soil 

types. Hence, different combinations of bands provide the best 
results (Table 2 and Table 3). For example, the soil background 
effects were significant in cumin (48 percent canopy cover) 
and chickpea (69 percent) compared to wheat (97 percent) or 
barley (97 percent). It is, therefore, interesting to note that an 
addition of a third band in OMBVI indices improves R2 values by 
4 to 12 percent in WBM and M of cumin and chickpea com- 
pared to their best two-band TBns  (Table 4). By contrast, when 
soil background is insignificant, as in case of wheat and barley, 
addition of a third band is not of importance with three of the 
four models (WBM of barley, WBM and M of wheat; Table 4) 
showing better R2 values for two-band T ~ V I  over three-band 
OMBVI. 

Comparison of TBVl and OMBVl with Various other Vegetation indlcas 
Relationships of six other unique narrowband and broadband 
vegetation indices were established with wet biomass (WBM) 
and leaf area index (LAI) of six crops and compared with the nar- 
rowband and broadband TBVI and o ~ V I  (Table 4). In 11 of the 
12 crop models, the best indices were narrowband versions of 
either O m V I  or TBVI (see Table 4). The two-band vegetation 
index (TBVI) uses the best two narrowband or broadband combi- 
nations compared to ~ V I ,  which rigidly uses a NIR and a red 
band. As a result, there is a significant improvement in esti- 
mates of several crop variables using T B ~  when compared 
with ~ V I .  For example, cumin WBM and M (Table 4). mm is 
based on the contrast of high reflectance in the NIR and high 
absorption in the red. NDVI normalizes the topographic effects, 
is sensitive to photosynthetically active radiation, is a simple 
and reliable measure of greenness in remotely sensed data for a 
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Plate 1. Contour plot of R2 values for narrowband TBvl versus LAI. The R2 values 
for agricultural crops are (a) wheat (above the diagonal) and (b) barley (below 
the diagonal). 
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Plate 2. Optimal waveband clusters. Information clusters across the narrowband and broadband spectrum. (a) Distribution 
of narrowband information clusters: The most frequently occurring narrowbands in models that provide the best estimates 
of biophysical characteristics. (b) Distribution of broadband Landsat-5 TM information clusters: The most frequently occurring 
broadbands in models that provide the best estimates of biophysical characteristics. 

single date, and is conveniently scaled between - 1 and + 1 
(Lyon eta]., 1998). However, NDVI often overestimates vegeta- 
tion in darker soils compared to brighter soils (Elvidge and 
Lyon, 1985). 

The transformed soil adjusted index (TSAVI) serves to 
reduce the variance associated with soil background influences, 
but does not enhance the variance of the vegetation canopy 
reflectances. TSAVI is expected to account for local changes in 
soil color, texture, and brightness (Huete, 1988; Baret et al., 
1989; Qi et al., 1994) and is among the most sensitive vegeta- 
tion indices (Lawrence and Ripple, 1998). Overall, RZvalues for 
TSAVI were significantly lower than those of the TBVI or OMsVI 

models (Table 4). It appears that the normalization of the soil 
background influences to a constant ratio or a perfect one- 
dimensional soil line only removes bare soil spectral influ- 
ences and not the greater soil brightness influences (Huete et 
al., 1985). The performance of TSAW is dependant on a precise 
estimate of the local soil line. In this study, the soil line was 
determined using soil reflectance data from 43 locations. Gath- 
ering soil reflectance data from each sample site location in 
real time requires a more precise estimate of soil line. Soil line 
is a function of so many variables (e.g., texture, color, organic 
content) that needs to be accounted for in order to obtain a per- 
fect soil line. Furthermore, the micro conditions vary even 
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Figure 2. Broadband and narrowband indices versus crop biophysical variables. Relationship of broadband Landsat-5 TM NDVI 
of all six crops with (a) LA1 and (b) wet biomass compared with tweband vegetation indices (TBVI) of narrowbands of all six 
crops with (c) LAI and (d) wet biomass. 

within a field (e.g., moisture-rainfall, irrigation, tillage, drain- 
age, slopes) that also needs to be accounted for. It appears that 
accounting for the micro variability in soil at each sample site 
location may be needed in order to better assess TSAVI. 

The broadband atmospherically resistant indices (ARVI) 
are computed only for atmospherically effected Landsat-5 TM 
data; hence, the discussion is limited to broadband indices 
only. Generally, ARVIs, perform slightly better than do the broad- 
band NDVI or TSAVI (Table 4). ARVI serve to reduce variance asso- 
ciated with atmospheric influences, not to enhance the vari- 
ance of the vegetation canopy reflectances. The results indicate 
a marginal improvement with atmospheric correction in the 
majority of models. However, it needs to be noted that the ARVI 
was corrected only for atmospheric scattering and not for atmos- 
pheric absorption, for which time and location specific cli- 
matic data are needed, which are often difficult to obtain. 

A significant proportion of the best three-variable Landsat- 
5 broadband indices (Table 3) consists of the mid-infrared 
bands ( T M ~  and mi'), indicating the importance of these bands 
in establishing crop characteristics. Mid-infrared bands pro- 
vide valuable complementary information about the geometric 
structure of canopies, on optical properties of underlying soils 

1 (Boyd and Ripple, 1997; Boyd et al., 1999), and in handling 

1 complex dissimilar growth stages and growing conditions 
(Thenkabail et al., 1994; Thenkabail eta]., 1995). 

The tasseled-cap-based greenness vegetation index, TCGVI, 

/ uses data from six non-thermal TM bands and yet explains less 

I variability than do the two-band or multiband OMBVI or 
red- and NIR-based NDVI (Table 4). Similarly, broadband and 

1 narrowband PCVI (Table 4), computed using principal-compo- 

nent-derived wavebands 1 and 2, performed poorer than did 
m m ,  TBw, or O m .  The coefficients of TCGVI and p m  were 
computed from the TM image of the entire study area. Apart 
from the six agricultural crops and rangelands used in this 
study, the study area consists of many other crops in varying 
growth stages, agroforests, several other vegetation types, and 
land-cover types. As a result, the coefficients in TCGVI or PCVI 
are generalized and are less effective for specific crops. How- 
ever, TCGVI or PCVI might provide equations that are more robust 
across crops and for a composite mix of vegetations. 

Model Evaluations 
The strengths of the spectro-biophysical models were tested 
using independent datasets for wheat crops (Figure 3). For the 
18 independent wheat fields (data not used in model develop- 
ment), there was a high degree of correlation (R2 = 0.89) 
between actual and predicted wet biomass. The predicted wet 
biomass was calculated using the equation WBM = 01429 
e3.szs7'NDw020s75. The NDVI920675 was computed using the best 
two narrowbands (based on model evaluations for all crops) 
that involved bands centered at 920 and 675 nanometers. A 
nominal bandwidth of 15 nanometers was used for each nar- 
rowband. Other crops had relatively smaller sample sizes (see 
Figure I), requiring all data to be used for model development. 

Optimal Number of Narrowbands, Band Centers, and Bandwidths 
The frequency of occurrence of narrowbands in the best three 
TBVI models [Tables 2 and 3) and O M B ~  models (Table 3) were 
determined and their distribution in the visible and near-infra- 
red spectrum were plotted (Plate 2a). An overwhelming pro- 
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Hyperspectral Data 
Landsat TM Data 

Best one-variable Best two-variable Best three-variable 
model OMNBR (best model OMNBR (best model OMNBR (best Best two- or three-variable 
one-variable models) two-variable models) three-variable models) model OMNBR (best 
- three-variable models) 

Band Band Band centers 
Dependant centers (nm)cc centers  MI)^^ (ndcc  TM bands 

Crop type crop (independent RZ (independent R2 (independent R2 (independent R2 
(sample size) variable variable) value variables) value variables) value variables) value 

Best R2 value for two-band 
normalized difference 

vegetation index models 
(these results from Table 4) 

Broad-band 
Landsat TM Narrow-band 

NDVI spectro NDVI 
model R2 model R2 

Percent increase in 
best three-variable 
(OMNBR) model 

over: 

Broad- Narrow- 
band band 
NDVI NDVI 

1. Barley (44) WBM 
DBM 
W 

2. Wheat (64) WBM 
DBM 
W 

3. Lentil (23) WBM 
DBM 
W 

4. Cumin (17) WBM 
DBM 
LA1 

5. Chickpea (14) WBM 
DBM 
LA1 

6. Vetch (14) WBM 
DBM 
W 

Note: AA = piecewise multiple linear narrow-band (OMNBR) models were obtained using MAXR algorithm in SAS (1997a; 1997b). 
BB = The model with highest RZ between OMNBR (three-variable), narrow-band N D ~ ,  and broad-band NDvI is shown in bold; 
CC = bandwidths are 1.43 nanometers wide for each band center. Band centers in decimal fractions were rounded off to the nearest whole number (e.g., 549.86 nanometers as 550 nanometers. 



portion of crop information is concentrated in a few narrow- 
bands. The four most prominent narrowbands are (Plate 2a) the 
red absorption maxima between 660 nm and 690 nm, the near- 
infrared reflection peak between 900 nm and 920 nm, a portion 
of the red-edge between 700 nrn and 720 nm, and the green 
reflectance maxima centered between 540 nm and 560 nm. A 
more careful evaluation identified information clusters for 1 2  
distinct narrowbands (Table 5). The 1 2  optimal narrowbands 
in the visible and NIR are one blue, three green, two red, two red- 
edge, one NIR, two NIR peak, and one NIR moisture sensitive. 
The bandwidths are defined as very narrow (less than or equal 
to 15 nanometers) or narrow (15 to 30 nm) or broad (greater 
than 30 nm). Based on this definition, only band 9 at 120 nm is 
broadband (Table 5). The other 11 bands are narrowbands 
(Table 5). The band centers and bandwidths presented in Table 
5 are derived from the results of Tables 2,3, and 4 and Plates 
such as 1 and 2. Bandwidths can be obtained from contour 
widths in Plate 1. The band centers and widths are rounded off 
to the nearest 5 nm or 10 nm (e.g., 718 nm as 720 nm). Anumber 
of these band centers are positioned where the soil (fallow 
farms) and vegetation slopes intersect and head in opposite 
directions (see Figures l a  through Id), resulting in increased 
sensitivity of indices using this portion of the spectrum. For 
example, at 570 nm for chickpea and cumin (Figure lc) and 
720 nm for wheat (Figure la). 

The two-band indices, TBWS, that are the best canbe formu- 
lated using narrowband combinations of a red and a NIR peak, or 
a red and a NIR "shoulder," or a red-edge and a Nlli peak, or a red- 
edge and a NIR shoulder, or a green and a red band combina- 
tions (Tables 2 and 3). Bandwidths can vary from 5 nm to 30 nm 
(Table 5). Wavebands along the NIR "shoulder" can be either a 
broadband or a narrowband, providing similar results. For the 
three-variable multi-linear O M ~ W  models (Table 3), band com- 
binations that provide the best results are, typically, combina- 
tions of any three narrowbands consisting of red, Nni peak, red- 
edge, blue, or green. In Landsat-5 TM a red ( T M ~ )  and a NIR (TM4) 
band provide the best results followed by the green (TM~) band 
(Plate 2b and Tables 2 and 4). Narrowband versions of these 
bands are (Table 5) band 6 (A = 675 nm, AA = 15 nm), band 10 
or 11 (A = 905 or 920 nm, AA = 15 nm), and band 3 (A = 550 nm, 
AA = 25 nm). For example, barley dry biomass was estimated 
with an R2 value of 0.81 using narrowbands centered at 670 nm 
and 910 nm compared to a best R2 value of 0.76 using broad- 
bands TM3 and TM4 (Table 2). Common vegetation reflectance 
peaks at around 900 nm to 940 nm and absorption peaks 
around 670 nm or 690 nm (e.g., Figure 1). Results (Tables 2,3, 
and 4 and Plate 2a) indicate that these wavebands provide 
maximum crop information. Earlier, Blackburn (1998; 1999) 
also found Chlorophyll a and b of crops or vegetation to be 
most strongly correlated around 670 nm and 680 nm. Elvidge 
and Chen (1995), Carter (1998), and Thenkabail(2000a) found 
wavebands in the range of 680 to 700 nm and 900 to 940 nm to 
be most sensitive to crop characteristics. Blackburn and Steele 
(1999) inferred broadbands to be far less sensitive to pigment 
concentrations, LAI, or percent cover relative to narrowbands. 
The structure of plant canopy has a significant bearing on spec- 
tral signature. For example, the planophile (30 degrees) struc- 
ture of legumes such as vetch and lentil (Figure lb) contribute 
to significantly greater reflectance in NIR and greater absorp- 
tion in red when compared with erectophile (65 degrees) struc- 
ture of cereals such as wheat and barley (Figure la). The erecto- 
phile structure leads to significant slope changes in spectra in 
the region of 740 nm to 940 nm (Figure la). 

The above results further indicate that the optimal infor- 
mation on crops are not necessarily concentrated in the red 
and NIR wavelengths but are often in other portions of the 
wavebands such as red-edge or green or moisture sensitive NIR. 
For example, chickpea WBM is best modeled using two visible 
bands: a green band centered at 568 nm (AAl = 10) and a red 
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Figure 3. Actual versus predicted wet biomass for wheat crop. Predicted biomass 
was calculated using the equation WBM = 0.1429 e3.6287*NDV'920675. NDVl was 
computed using waveband centers at 920 nm and 675 nm, both with bandwidths 
of 1 5  nm. The 1:l line had an R2 value of 0.89. 

band centered at 678 nm (LAz = 10) (Table 2). The visible spec- 
trum is very sensitive to loss of chlorophyll, browning, ripen- 
ing, and senescing (Idso et al., 1980); carotenoid (Tucker, 1977; 
Blackburn, 1998); soil background effects; and crop senescing 
rates and grain yield prediction (Idso et al., 1980). Changes in 
pigment content and chloroplast for different crop type, 
growth stage, and growing conditions can cause sensitivity 
around 568 nm and 520 nm (Nichol et al., 2000), resulting in 
dramatic shifts in crop-soil spectral behavior (Figures l a  
through Id). Similarly, vetch w is best modeled using a red- 
edge centered at 720 nm (AAl = 6) and a NIR peak centered at 
910 nm (A& = 10) (Table 2). Several wavebands found along 
the red-edge (701 nm through 740 nm) appear prominently in 
the best crop models (Table 2), especially for mixed growing 
conditions, conditions of stress, and background effects 
(Elvidge and Chen, 1995;Dawson and Curran, 1998; Shaw et 
al., 1998; Clevers, 1999). Among the other optimal bands (Table 
5), band 3 (A = 550 nm) is strongly correlated with total chloro- 
phyll (Schepers et al., 1996), and band 1 ( A  = 490 nm) with 
carotenoid, leaf chlorophyll, and senescing conditions 
(Tucker, 1977; Aoki et al., 1981; Gitelson et al., 1996). As bio- 
mass and moisture in crops increase, absorption in the mois- 
ture sensitive portion of the NIR shoulder (940 nm to 1010 nm) 
also increases (see Figures l a  through Id). The mean wet bio- 
mass (kg/m2) in decreasing order of magnitude was wheat 
(3.28), vetch (3.22), barley (2.54), lentil (2.49), chickpea (1.41), 
marginal lands (0.90), and cumin (0.82). The mean spectral 
plots clearly indicate a significantly larger "trough" in the 940- 
to 1010-nm bands for vetch and lentil (Figure lb) and for wheat 
and barley (Figure la) when compared with chickpea and 
cumin (Figure lc) and marginal lands (Figure Id). Tho of the 
best OMsVI models (Table 3), those for cumin WBM and barley 
LAI, involve biomass or moisture sensitive Nm bands centered 
at 989 nm. Similarly, chickpea dry biomass is best estimated 
using a 965-nm-centered narrowband. Overall, taking the 
results of all TBVI and OMBVI models, a moisture sensitive NIR 
band centered at 975 nm (AA = 15 nm) is considered optimal 
(Table 5). Solar irradiant energy and the sensitivity of light 

detectors are relatively higher around 960 nm than in the water 
absorption bands at 1450 nm and 1900 nm (Penuelas et al., 
1993). It has been noted that the canopy reflectance spectrum at 
960 nm detected the difference between water stressed and 
non-stressed canopies of rice before symptoms were visible and 
before NDVI could detect such a stress (Shibayama et al., 1993; 
Pefiuelas et al., 1995). It has been noted in this study that the 
moisture waveband centered on 975 nm is optimal in provid- 
ing crop growth information. 

In all, 1 2  narrowbands (Table 5) and their bandwidths are 
determined. The importance of each of these wavebands in the 
study of crop characteristics is noted by providing appropriate 
references (Table 5). 

Optimal Waveband Evaluations 
The optimal bands determined in this study are compared with 
the optimal bands from another independent study by Then- 
kabail et al. (2000b), which used hyperspectral data for five 
summer season crops (cotton, potato, soybeans, corn, and 
sunflower) from 1997. In this study six rain-fed crops (wheat, 
barley, chickpea, lentil, cumin, and vetch) from the 1998 crop- 
ping season were used. The band centers of 10 of the 1 2  optimal 
narrowbands in this study were the same as those of Thenkabail 
et al. (2000b) with bandcenters within plus or minus 7 nano- 
meters. The 1 2  optimal waveband centers of this study (with 
degree of deviations from Thenkabail et al. (2000b) provided 
within brackets) are A, = 489 nm (+6 nm; that is, at 495 nm in 
Thenkabail et  al. (2000)), A2 = 518 nm (+7 nm), A, = 547 nm 
(+3 nm), A, = 575 nm (-7nm), A, = 604nm (none), A, = 661 
nm(+7nm),A7=675nm(+7nm),A,=704nm(--6nm],A,= 
718 nm (+2 nm), A,, = 846 nm (-1 nm), A,, = 904 nm (none), 
and A12 = 975 nm (+ 7 nm). These results confirm the validity 
of the 1 2  optimal hyperspectral wavebands for studying 
agricultural crop characteristics. 

Conclusions 
The study established that the optimal agricultural crop and 
rangeland biophysical information could be obtained using 
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Green 1 

3 Green 2 

4 Green 3 

5 Red 1 

6 Red 2 

9 NIR 

11 NIR peak 2 

12 NIR- 
Moisture 
sensitive 

TABLE 5. TWELVE OPTIMAL BANDS FOR STUDYING AGRICULTURAL CROPS. HYPERSPECTRAL NARROWBAND CENTERS AND BANDWIDTHS THAT PROVIDE OPTIMAL 
AGRICULTURAL CROP AND MARGINAL LAND BIOPHYSICAL ~NFORMATION 

I Wavelength 
Band portion Band center: Bandwidth: 

number name A I=) An (nm) Band description or significance 

1 Blue 490 30 Crop to soil reflectance ratio minima for blue and green bands. Sensitive to loss of 
chlorophyll, browning, ripening, senescing, and soil background effects (Thenkabail et 
al., 1999; Thankabail et al., 2000b). Very sensitive to senescing rates and is generally an 
excellent predictor of grain yield. Also sensitive to carotenoid pigments (Tucker, 1977; 
Blackburn, 1998). Blue range use is, however, questionable due to atmospheric effects 
and small contrast in reflectance of soil and vegetation (anonymous reviewer). 
Positive change in reflectance per unit change in wavelength of this visible spectrum is 
maximum around this "green" waveband. First order derivative plot of crop spectra will 
show this (e.g., Elvidge and Chen, 1995; Thenkabail et al., 1999; Thenkabail et al., 2000b). 
Nichol et al. (2000) found this band to be sensitive to pigment content. 
Green band peak (or the point maximal reflectance) in the visible spectrum. Is strongly 
related to total clhorophyll (Schepers et al., 1996; Thenkabail, 2002). 
Negative change in reflectance per unit change in wavelength of the visible spectrum is 
maximum around this "green" wavelength. First order derivative plot of crop spectra 
will show this (e.g., Elvidge and Chen, 1995; Thenkabail et al., 1999; Thankabail et al., 
2000b). Sensitive to pigment content (Nichol et al., 2000). 
Chlorophyll absorption pre-maxima (or reflectance minima 1). Absorption in the red 
band (600 to 700 nm) varies significantly due to changes in factors such as biomass, LAI 
soil background, cultivar types, canopy structure, nitrogen, moisture, and stress in plants 
(Elvidge and Chen, 1995; Carter, 1997; Blackburn, 1998). 
Chloropyll absorption maxima anywhere in the 350- to 1050-nm range of the spectrum 
(or reflectance minima). Greatest crop-soil contrast is around this band center for most 
crops inmost growing conditions (Thenkabail etal., 1999; Thenkabail etal., 2000b). Strong 
correlations with Chlorophyll a and chlorophyll b (Blackburn, 1998; Blackburn, 1999). 
Chlorophyll absorption post-maxima (or reflectance minima 2). This is a point of sudden 
change in reflectance from near-maximal red absorption to beginning of the most dramatic 
increase in reflectance along the red-edge. Found most sensitive to plant stress and was 
found the most sensitive red band by Carter (1994). 
Critical point on the red-edge around which there is maximum change in the slope of 
the reflectance spectra per unit change in wavelength anywhere in the 350- to 1050-nm 
range. First-order derivative plot of crop spectra will show this (e.g., Elvidge and Chen, 
1995; Thenkabail, 2002). Sensitive to temporal variations in crop growth and condition 
resulting in red-edge shifts. Sensitive to vegetation stress and provides additional informa- 
tion about chlorophyll and nitrogen status of plants (Elvidge and Chen, 1995; Shaw et 
al., 1998; Clevers, 1999). 
Center of "NIR shoulder." For many crops, a broad-band or a narrow-band will provide 
the same result due to near uniform reflectance throughout the NIR shoulder. In such 
instances, other bands along the NIR shoulder will be redundant due to similar information 
as this waveband. Strong correlation with total clhomphyll (Schepers et al., 1996). 
Peak or maximum reflectance region of the NIR spectrum for certain types and/or growth 
stages of vegetation or crops. Crops such as cotton and corn or when crops are under 
stress or senescing there is significant change in reflectance along the "NIR shoulder" 
(740 to 940 nm) (Thenkabail et al., 1999; Thankabail et al., 2000b). Useful for computing 
crop moisture sensitive index (FJefiuelas et al., 1993). 
Peak or maximum reflectance region of the NIR spectrum for certain other types andlor 
growth stages of vegetation or crops. Crops such as cotton and corn or when crops are 
under stress or senescing there is significant change in reflectance along the "NIR shoulder" 
(740 to 940 nm) (Thenkabail et al., 1999; Thankabail et al., 2000b). 
Center of the moisture sensitive "trough" portion of NIR. The "trough" portion varies 
from 940 to 1040 nm and typically has minimum reflectance around 975 nm (or point 
of maximum "dip" in the trough portion). Plant moisture sensitive band (Pefiuelas et al., 
1995; Thenkabail et al., 2000b, Thenkabail, 2002). Direct measurements of water vapor 
in and over vegetation canopies is feasible (Richey et al., 1989). 

only 12 of the 430 hyperspectral bands in the visible and near- 
infrared portion of the spectrum. The research was based on 
hyperspectral narrowband and Landsat-5 TM broadband data 
for six agricultural crops (barley, wheat, chickpea, lentil, vetch, 

l and cumin) and marginal lands. Biophysical variables in- 
cluded leaf area index, wet and dry biomass, canopy cover, 
plant height, and plant nitrogen. Narrowband data were gath- 
ered using 430 discrete narrowbands, each of 1.43-nm width 
and in the spectral range of 395 nm to 1010 nm. Broadband data 
were acquired to coincide with field spectral and biophysical 
measurements. Data from six non-thermal bands (450 nm to 
2350 nm) of Landsat-5 TM were used. 

The main focus in this paper was to conduct a rigorous 

evaluation of narrowband (1) two-band vegetation indices 
(TBVI) and (2) optimum multiple-band vegetation indices 
(OMBVI), and to compare them with six other categories of nar- 
row and broadband indices. The six other narrowband and 
broadband indices are red- and ~nr-based normalized differ- 
ence NDVI, transformed soil adjusted TSAVI, atmospheric cor- 
rected ARVI, middle-infrared-based MM, tassel cap greenness 
TCGVI, and principal-component-based PCW. The narrowband 
TBVI were used to perform a rigorous search procedure involv- 
ing 430 bands in order to identify the best NDVI predictors of 
crop biophysical variables and are illustrated using special 
lambda (A,) versus lambda (A2) plots of R2 values. The piecewise 
linear regression models involving 430 bands are run to deter- 

I 
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mine the best one-variable, two-variable, to n-variable nar- 
rowband OMBVI models for each crop variable. 

Twelve bands provided optimal biophysical information 
(Table 5). The bandwidths for 11 of the 12 optimal bands are 
narrow (less than 30 nm). Only one band, NIR "shoulder," cen- 
tered at 845 nm has broad (greater than 30-nm) bandwidth. An 
overwhelming proportion of crop information was concen- 
trated in a few narrowbands plate 2a). The most prominent 
narrowbands, in order of importance, occur in the following 
waveband ranges: 660 to 690 nm (red-absorption maxima), 900 
to 925 nm (near-infraredreflection peak), 700 and 720 nm (a por- 
tion of red-edge), and 540 to 555 nm (green reflectance max- 
ima). These are followed by other bands that provide signifi- 
cant crop growth and yield information: a blue band of rapid 
change in slope of the spectra per unit change in wavelength 
centered around 490 nm; two green bands centered at 520 nm 
and 575 nm, providing the most rapid positive or negative 
change in reflectance per unit change in wavelength anywhere 
in the visible portion of the spectrum; the center of the NIR 
"shoulder" centered at 845 nm; and a biomass/moisture sensi- 
tive band centered around 975 nm. The identification of opti- 
mal bands serves two main purposes: (1) it helps select 
wavebands most needed for an application from hyperspectral 
datasets, and/or (2) it helps select wavebands for application 
specific sensors onboard the next generation of satellites. This 
study established that 418 of the 430 bands were redundant in 
providing agricultural crop biophysical information. These 
results conform with another independent study by Thenkabail 
et 01. (2000b) for summer-irrigated crops in the same study 
area. The band centers of the 10 of the 12 optimal narrowbands 
in this study were the same as those of Thenkabail et al. 
(2000b), with bandcenters within plus or minus 7 nanometers. 
The optimal bands suggested in this paper are expected to help 
reduce data redundancy, data volumes, and time and resources 
involved in image interpretation and analysis. 
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